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(54) Speech fundamental frequency estimator and method for estimating a speech fundamental

frequency

(57)  The present invention relates to a speech fun-
damental frequency estimator (1100) which is configured
for receiving a first set of values ()71) and a second set
of values ()72), the first set of values ()71) being a frequen-
cy domain representation of a first set of time domain
signal values (y4) within a first time interval (t;) and the
second set of values ()72) being a frequency domain rep-
resentation of a second set of time domain signal values
(y,) within a second time interval (t,), the second time
interval (t,) being later than and offset from the first time
interval (ty). Furthermore, the speech fundamental fre-
quency estimator (1100) comprises a first power density
spectrum calculator (1102) which is configuredfor storing
a version of the first set of values ()71) and being config-
uredforproviding values of a first power density spectrum

(S55,(Q,,m)

by multiplying the stored version of the first set of values
()71) with a conjugate complex version of the second set
of values ()72). In addition the speech fundamental esti-
mator (1100) comprises a second power density spec-
trum calculator (1104) being configured for providing val-
ues of a second power density spectrum

(S5 (Q2,,m))

by multiplying a version of the second set of values ()72)
with a complex conjugate verisin of the second set of
values ()72). Finally, the speech fundamental frequency
estimator (1100) includes an analyzer 1(106) which is
configured for determining the speech fundamental fre-
quency estimate (fp(n)) on the basis of the values of the
first power density spectrum
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and the values of the second power density spectrum
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Description

[0001] This invention relates to speech analysis systems and especially to a speech fundamental frequency estimator
and a method for estimating a speech fundamental frequency.

Background of the invention
[0002] An estimation of the speech fundamental frequency is necessary in various applications:

e For example, partial speech recognition (model-based noise suppression) can be accomplished by the estimated
speech fundamental frequency of distorted speech signals in order to obtain an improvement of speech quality.

¢ In order to name a further example a rough preselection of model parameters can be performed by a speech
recognizer in speech recognition systems using the temporal average of this frequency. Thus, the recognition rate
of a speech recognizer can be increased significantly.

[0003] For further fields of application reference is made to the following literature:

¢ K. Fellbaum: Sprachverarbeitung und Sprachiibertragung, Springer, Berlin, Deutschland, 1984

¢ D.K. Freeman, G. Cosier, C.B. Southcott und I. Boyd: The Voice Activity Detector for the PAN-European Digital
Cellular Mobile Telephone Service, Proceed. of the Intern. Conf. on Acoust., Speech, and Signal Process., Vol. 1,
pages 369-372, 1989

e W. Hess: Pitch Determination of Speech Signals, Springer, Berlin, Deutschland, 1983

e P.Vary, R. Martin: Digital Speech Transmission, John Wiley & Sons, Chichester, England, 2006

¢ P.Vary, U. Heute, W. Hess: Digitale Sprachsignalverarbeitung, Teubner, Stuttgart, Deutschland, 1998

[0004] Numerous methods for estimation of the speech fundamental frequency exist. A group of methods which is
based on a DFT-transform (DFT = discrete Fourier transform) of the input signal is of special importance. Such methods
can be integrated in hands-free speech assistance systems with a multi-rate signal processing in a low-cost way as the
DFT-transform is already calculated for other algorithms, as, for example, a noise reduction or an echo compensation.
[0005] In order to describe the relevant state of the art in more detail, a typical multi-rate system is described which
can be used, for example, in order to perform a speech signal improvement (noise reduction, speech reconstruction).
Following, several further fields of application are presented in which an estimation of the reliable speech fundamental
frequency is of importance.

[0006] In voiced speech portions the corresponding spectrum shows distinct amplitude peaks which are located
equidistantly in frequency (see for example Fig. 1). The distance between two amplitude peaks represents herein the
speech fundamental frequency which is dependent of the speaker. With men this frequency varies between 80 Hz and
150 Hz, women and children, in contrast, have a higher speech fundamental frequency which varies between 150 Hz
and 300 Hz with women, respectively between 200 Hz and 600 Hz with children. A good, sure and reliable estimation
of the speech fundamental frequency is often not easy to obtain. Mainly difficulties in detecting low speech fundamental
frequencies arise wherein especially men have in most cases a low speech fundamental frequency.

[0007] In Figure 2 a block diagram of a multi-rate system for speech reconstruction with an analysis and a synthesis
filter bank for the signal processing is shown. The speech fundamental frequency estimation is shown as a separate
functional block. The aim of such an application is to extract parameters from a distorted speech signal y(n) as, for
example, the spectral envelope, the type of stimulation (voiced/unvoiced) and the speech fundamental frequency f,(n).
Subsequently an undistorted speech signal x(n) is resynthesized from these parameters. For this purpose a very precise
and reliable estimation of the speech fundamental frequency is necessary. The output signal x(n) after the synthesis
filter bank should be nearly without error, the following condition is therefore very desirable:

x(n) = s(n), (1)

s(n) denotes herein the undisturbed speech signal.

[0008] A sure estimation of the speech fundamental frequency is also of great importance in speech recognition
systems. Figure 3 shows a block diagram of a signal analysis system with subsequent feature extraction and speech
fundamental frequency estimation, in order to perform a speech recognition. An adequate estimation of the speech
fundamental frequency can, forexample, contribute to significantly improve the recognition rates of the speech recognizer.
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[0009] Basically there is a broad variety of application fields in which a reliable estimation of the speech fundamental
frequency is necessary. However a detailed description of such applications would go beyond the scope of this description.
Thus, reference is made to the following literature:

e E. Hansler, G. Schmidt: Acoustic Echo and Noise Control - A Practical Approach, John Wiley & Sons, Hoboken,
New Jersey, USA, 2004

e E. Hansler, G. Schmidt: Topics in Acoustic Echo and Noise Control - Selected Methods for the Cancellation of
Acoustic Echoes, the Reduction of Background Noise, and Speech Processing, Springer, Berlin, Deutschland, 2006

e P.Vary, R. Martin: Digital Speech Transmission, John Wiley & Sons, Chichester, England, 2006

¢ P.Vary, U. Heute, W. Hess: Digitale Sprachsignalverarbeitung, Teubner, Stuttgart, Deutschland, 1998

[0010] In literature a broad variety of different algorithms for a determination of the speech fundamental frequency
estimation exist as for example:

¢ Analysis in the cepstral domain - In the case speech generation is modelled as a source-filter-model (see also
J. Deller, J. Hansen, J. Proakis: Discrete-Time Processing of Speech Signals, IEEE-Press, New York, USA, 1993)
voiced sounds can be described as a convolution of a periodic stimulation signal with the impulse response of the
vocal tract. In the spectral domain the convolution becomes the product of the Fourier transforms of both portions.
If the Logarithm is taken the product becomes an addition of the separate components. After a further transform
(inverse Fourier transform) the cepstral domain is reached. In this domain it is possible to distinguish the spectrally
comparatively slowly varying frequency response of the vocal tract from the fundamental frequency of the stimulation
signal. Further details can be found for example in W. Hess: Pitch Determination of Speech Signals, Springer, Berlin,
Deutschland, 1983.

¢ Harmonic Product-Spectrum - Another method to estimate the speech fundamental frequency is the so-called
Harmonic Product-Spectrum. Herein the product over several equidistant sampling points of the absolute value of
the spectrum is calculated. The product becomes maximal in the case the increment (via frequency) corresponds
to just the speech fundamental frequency (respectively a multiple thereof). Further details can be found for example
in M. R. Schroeder: Period Histogram and Product Spectrum: New Methods for Fundamental Frequency Measure-
ments, J. Acoust. Soc. Am., Vol. 43, Nr. 4, pages 829-834, 1968.

¢ Analysis of the short-time autocorrelation - In voiced speech passages the first side lobe of the short-time
autocorrelation with an offset just corresponds to the speech fundamental period.

[0011] Other methods as the ones mentioned above also exist. The description of each single algorithm would,
however, be far beyond the possibilities given the present description. Therefore reference is made to further literature
as, for example, K. Fellbaum: Sprachverarbeitung und Sprachibertragung, Springer, Berlin, Deutschland, 1984 or D.K.
Freeman, G. Cosier, C.B. Southcott and |. Boyd: The Voice Activity Detector for the PAN-European Digital Cellular
Mobile Telephone Service, Proceed. of the Intern. Conf. on Acoust., Speech, and Signal Process., Vol. 1, Seiten 369-372,
1989 or W. Hess: Pitch Determination of Speech Signals, Springer, Berlin, Deutschland, 1983. The approach mentioned
last in the above listing has become very popular as it provides the advantage that already determined short-time DFT-
portions of an input signal, which are calculated for other applications, can be further used and thus a numerical effort
can be reduced.

[0012] However, the above mentioned approach of the state of the art also has significant disadvantages. Especially
the orders of the DFT (i.e. the DFT-block length) used for other purposes are often to little as to provide a reliable
estimation of the speech fundamental frequency for low voices.

[0013] Accordingly, a need exists to provide a speech fundamental frequency estimator and a method for estimating
a speech fundamental frequency which allow a more precise estimation of the speech fundamental frequency.

[0014] This need is met by the features of the independent claims. In the dependent claims further embodiment of
the inventions are described.

[0015] According to a first aspect of the invention the speech fundamental frequency estimator is configured for
receiving a first set of values and a second set of values, the first set of values being a frequency domain representation
of a first set of time domain signal values within a first time interval and the second set of values being a frequency
domain representation of a second set of time domain signal values within a second time interval, the second time
interval being later than and offset from the first time interval, the speech fundamental frequency estimator comprising:

- afirst power density spectrum calculator being configured for storing a version of the first set of values and being
configured for providing values of a first power density spectrum by multiplying the stored version of the first set of
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values with a complex conjugate version of the second set of values;

- asecond power density spectrum calculator being configured for providing values of a second power density spec-
trum by multiplying a version of the second set of values with a complex conjugate version of the second set of values;

- ananalyzer being configured for determining the speech fundamental frequency estimate on the basis of the values
of the first power density spectrum and the values of the second power density spectrum.

[0016] Analogously, according to said first aspect of the invention a method for estimating a speech fundamental
frequency is provided, the method using a first set of values and a second set of values, the first set of values being a
received frequency domain representation of a first set of time domain signal values within a first time interval and the
second set of values being a received frequency domain representation of a second set of time domain signal values
within a second time interval, the second time interval being later than and offset from the first time interval, the method
for estimating the speech fundamental frequency comprising the steps of:

- storing a version of the first set of values and providing values of a first power density spectrum by multiplying the
stored version of the first set of values with a compley conjugate version of the second set of values;

- providing values of a second power density spectrum by multiplying a version of the second set of values with a
complex conjugate version of the second set of values ;

- determining the speech fundamental frequency estimate on the basis of the values of the first power density spectrum
and the values of the second power density spectrum.

[0017] This first aspect of the invention is based on the finding that by utilizing the first and second sets of values,
which originate from sets of a time domain signal values in the time intervals which are offset from each other, results
in a total analyzed signal portion which is a larger than just one single signal portion, for example the first or the second
time intervals. Expressed in other words it is now possible to analyze a timely longer signal portion by means of existing
(short) time-frequency-transformed signals without the need to provide a new time-frequency-transform just for the
estimation of the speech fundamental frequency. However, it is exactly the combination of a given first and second set
of values which enables such a timely longer analysis interval, that is the calculation of the first spectrum from the first
and second sets of values and the second spectrum from only the second set of values. Thus, the first spectrum
represents the spectrum over the longer time interval whereas the second spectrum serves the purpose to determine
the characteristics of the second set of values in order to compensate errors in the first spectrum. Therefore itis necessary
not only to calculate the first spectrum but also to calculate the second spectrum.

[0018] The approach according to the first aspect of the invention provides the advantage that a signal given in a time-
frequency-transformed version (provided for other applications than speech fundamental frequency estimation) can still
be used also for speech fundamental frequency estimation (even in the case the time-frequency-transformed version
of the signal would normally be not appropriate for providing a precise speech fundamental frequency estimation).
[0019] According to a second aspect of the invention a speech fundamental frequency estimator is provided which is
configured for receiving a set of values, the set of values being a frequency domain representation of a set of time
domain signal values within a time interval, the speech fundamental frequency estimator comprising:

- apowerdensity spectrum calculator being configured for providing values of a power density spectrum by multiplying
a version of the set of values with a complex conjugate version of the set of values, wherein the power density
spectrum calculator is configured for determining an estimate of the power density spectrum of background noise
and for determining a noise suppression factor on the basis of said power density spectrum of background noise;

- an analyzer being configured for multiplying the power density spectrum with said noise suppression factor and for
performing a frequency-time-transform of the multiplied values of the power density spectrum in order to obtain a
set of correlation function values, wherein the analyzer is furthermore configured for determining the speech fun-
damental frequency estimate on the basis of the set of correlation function values.

[0020] Analogously, according to the second aspect of the present invention a method for estimating a speech fun-
damental frequency is provided, the method being configured for receiving a set of values, the set of values being a
frequency domain representation of a set of time domain signal values within a time interval, the method comprising the
steps of:
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- providing values of a power density spectrum by multiplying a version of the set of values with a complex conjugate
version of the set of values;

- determining an estimate of the power density spectrum of background noise and determining a noise suppression
factor on the basis of said power density spectrum of background noise and the power density sprectrum of the
input signal;

- multiplying the power density spectrum with said noise suppression factor;

- performing a frequency-time-transform of the multiplied values of the power density spectrum in order to obtain a
set of correlation function values; and

- determining the speech fundamental frequency estimate on the basis of the set of correlation function values.

[0021] The second aspect of the present invention is based on the finding that a significant improvement in the
preciseness of speech fundamental frequency estimation can be realized when background noise is adequately com-
pensated. This is especially the case in a scenario where in speech pauses erroneous detections of speech occur which
then falsify the detected result and, in consequence, decrease the reliability of the detected speech fundamental fre-
quency.

[0022] The second aspect of the present invention thus provides the advantage that by simple means, for example a
pause detector or just a further analysis of the already existing signal frames a significant improvement in preciseness
and reliability of the estimated speech fundamental frequency can be obtained.

[0023] According to a further aspect of the present invention the speech fundamental frequency estimator is charac-
terized in that the first power density spectrum calculator is configured for multiplying versions of the sets of values which
represent sets of time domain signal values having overlapping time intervals. This provides the advantage that by
multiplying said sets of values, which represent portions of overlapping and therefore consecutive time intervals, a signal
in a total time interval can be analyzed, in which a low fundamental frequency can be reliably estimated in given short
time signal portions.

[0024] Furthermore, the speech fundamental frequency estimator according to another aspect of the present invention
is characterized in that the first power density spectrum calculator is configured for multiplying versions of the sets of
values which represent time domain signal values having time intervals overlapping in least 25 percent. This provides
the possibility that the speech fundamental frequency estimate can be surely determined as the first and second sets
of values belonged to time domain signal values which have a sufficiently overlapping a interval structure. Therefore,
due to the sufficient overlap of both time intervals, such an estimation can be considered to be an estimation over the
"longer" time interval.

[0025] According to a further aspect of the present invention the speech fundamental frequency estimator is charac-
terized in that the second power density spectrum calculator is configured for providing a conjugate complex version of
the second set of values to the first power density spectrum calculator and wherein the first power density spectrum
calculator is configured for using the provided conjugate complex version of the second set of values as the version with
which the stored version of the first set of values is to be multiplied. This provides the advantage that a complex conjugate
version of one of the sets of values has to be calculated only once such that the numerical or computational effort can
be reduced.

[0026] In another embodiment of the present invention the speech fundamental frequency estimator is characterized
in that the analyzer is configured for performing a first frequency-time-transform of the first power density spectrum in
order to obtain a first set of correlation function values and for performing a second frequency-time-transform of the
second power density spectrum in order to obtain a second set of correlation function values, wherein the analyzer is
furthermore configured for determining a set of normalization values and a set of weighting values from the second
power density spectrum and for using the set of normalization values and the set of weighting values in the first and
second frequency-time-transform and wherein the analyzer is furthermore configured for determining the speech fun-
damental frequency estimate on the basis of the first and second sets of correlation function values. This provides the
advantage that, on one hand, the short-time envelope can be eliminated and, on the other hand, it is possible to increase
the attenuation with rising frequency. Herewith typical characteristics of the speech, especially the speech fundamental
frequency structure in the low frequency rage can be adequately be dealt with.

[0027] Also, the speech fundamental frequency estimator according to a further embodiment can be characterized in
that the analyzer further comprises a compensator being configured for adaptively compensating the values of the first
set of correlation function values by a correction factor being based on a value of the second set of correlation function
values and wherein the analyzer is furthermore configured for determining the speech fundamental frequency estimate
on the basis of the compensated first set of correlation function values and the second set of correlation function values.
Providing such an adaptive compensation control provides the advantage that it is now possible to correct error terms
in the cross correlation function as to compensate for example undesired amplitudes which occur at the distinct offsets.
[0028] According to another embodiment the speech fundamental frequency estimator can be characterized in that
the compensator is configured for multiplying the second set of correlation function values by a lower bounded quotient



10

15

20

25

30

35

40

45

50

55

EP 1944 754 A1

between a value of the first set of correlation function values and a value of the second set of correlation function values
in order to obtain said compensated first set of correlation function values. Such a configuration of the speech fundamental
frequency estimator makes sure that a relation between the cross correlation function and the autocorrelation function
does not decrease below a minimal value which, in turn, improves the robustness of speech fundamental frequency
estimation.

[0029] Furthermore, it is also possible according to another embodiment of the present invention that the speech
fundamental frequency estimator is characterized in that the analyzer is configured for combining the compensated first
set of correlation function values and the second set of correlation function values in order to obtain an extended set of
correlation function values, wherein the values of the extended set of correlation function values assume corresponding
values from the compensated first set of correlation function values, the second set of correlation function values or
values between the compensated first set of correlation function values and the second set of correlation function values
and wherein the analyzer is furthermore configured for determining the speech fundamental frequency estimate on the
basis of said extended set of correlation function values. This provides the advantage that the extended set of correlation
function values comprises now information from the first as well as the second set of correlation function values such
that an estimation of the speech fundamental frequency can be based on the information comprised in the first and
second time interval as well as a correction of possible errors is also possible by the information of the second time
interval. Furthermore, it is also possible to perform a weighting of the values of the first set of correlation function values
in contrast to the values of the second set of correlation function values in order to take into account the influence of an
offset between the first set of correlation function values (respectively the compensated set of correlation function values)
and the second set of correlation function values.

[0030] In a further embodiment the speech fundamental frequency estimator is characterized in that the analyzer is
configured for determining the speech fundamental frequency estimate by searching the index of a maximum value from
the extended set of correlation function values within a predetermined number of indices of the values of the extended
set of correlation values, from the first or second set of correlation function values within a predetermined number of
indices of values of the first respectively second set of correlation function values or from the compensated first set of
correlation function values within the predetermined number of indices of values of the compensated first set of correlation
function values and wherein the analyzer is furthermore configured for determining the speech fundamental frequency
estimate as the product of a sampling frequency and a reciprocal value of said searched index.

[0031] According to a further embodiment, the speech fundamental frequency is characterized in that the analyzer is
furthermore configured for determining a reliability factor for the determined speech fundamental frequency estimate
and for blocking an output of the determined speech fundamental frequency estimate in the case the determined reliability
factor for the determined speech fundamental frequency estimate is below said predetermined reliability factor. Such a
configuration improves the reliability of the estimated speech fundamental frequency.

[0032] Additionally, in a special embodiment the speech fundamental frequency estimator can be characterized in
that the analyzer is furthermore configured for determining said reliability factor by dividing the maximum value at said
searched index by the first value of the extended set of correlation function values or, respectively the first, the com-
pensated first or second set of correlation function values. This provides the advantage that the reliability factor is only
dependent on the scenario in which the speech fundamental frequency estimator is used and not on just a predefined
factor which might be too rough in some situations.

[0033] Furthermore, the speech fundamental frequency estimator can be characterized in that the second power
density spectrum calculator is configured for determining an estimate of the power density spectrum of background
noise and for determining a noise suppression factor on the basis of said power density spectrum of background noise,
and wherein the analyzer is configured for multiplying the first and second power density spectrum with said noise
suppression factor prior to the frequency-time-transform of the first respectively second power density spectrum. This
provides the advantage that an additional improvement can be realized as then erroneous detections in speech pauses
can be avoided, which, in turn, improve the reliability of the estimated speech fundamental frequency estimate.

[0034] Especially the speech fundamental frequency estimator can be characterized in that the second power density
spectrum calculator is configured for determining the noise suppression factor as the maximum of a predetermined
maximum suppression coefficient and a term being dependent on a quotient of the estimate of the power density spectrum
of background noise and the second power density spectrum. This makes sure, that a minimum suppression factor is
used and thus an effective suppression of background noise is accomplished.

[0035] In a further embodiment of the present invention the speech fundamental frequency estimator can be charac-
terized in that the second power density spectrum calculator is configured for determining the estimate of the power
density spectrum of background noise in speech pauses or for determining the estimate of the power density spectrum
of background noise from a segment-wise estimation of the minima of the power of a differential signal. This provides
an efficient and numerically simple way of determining the estimate of the power density spectrum of background noise.
[0036] In particular, the speech fundamental frequency estimator can be characterized in that the noise suppression
factor is defined by
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V(e n) = max<{ V, 1 - Bt

wherein gnn(ﬂu,n) denotes the estimate of the power density spectrum of the background noise, gyy(QM,n) denotes the
second power density spectrum of the input signal, V, denotes a predefined maximum attenuation factor and B denotes
a value for overestimating the power density spectrum of the background noise.

[0037] In a further embodiment of the present invention the speech fundamental frequency estimator can be charac-
terized in that the analyzer is furthermore configured for reestimating the speech fundamental frequency estimate in the
case the determined speech fundamental frequency estimate is below the predefined frequency value wherein the
analyzer is configured for performing the reestimation by searching a further index of a further maximum value of the
extended set of correlation function values, the first or second set of correlation function values or the compensated first
set of correlation function values within a further number of values of said sets of correlation function values and for
outputing a product of a sampling frequency and a reciprocal value of said further index as the determined speech
fundamental frequency estimate. This provides a further improvement of the speech fundamental frequency especially
in the case when the determined estimate is below said predefined frequency (which means that the estimate may
probably not as reliable as actually wanted).

[0038] Especially the speech fundamental frequency estimator can be characterized in that the analyzer is configured
for searching said index of said further maximum value using a number of values k of said sets of correlation function
values which is defined by

fs </if<—fs—+ko

.fp,mzn: N pr('”')

wherein k denotes the number of values of said sets of correlation function values, f,(n) denotes the previously determined
speech fundamental frequency estimate, f, .., denotes a predefined value of a maximal possible speech fundamental
frequency, f; denotes a sampling frequency and k;, denotes a constant which enables the search of a maximum slightly

Js

2f,(m)

broadens the region to be searched and thus strengthens the reliability and preciseness of the outputted estimate.
[0039] Also, in another embodiment of the present invention the speech fundamental frequency estimator can be
characterized in that the analyzer is configured for outputting said product as the predetermined speech fundamental
frequency estimate only in the case the value of the autocorrelation function at the further index is larger than 60 percent
of the value of the autocorrelation function at the previously searched maximal index as well as a value of the extended
set of correlation function values at said further index is larger than a previously defined amplitude value. This further
strengthens the validity of the outputted speech fundamental frequency estimate as before outputting the result two
separate conditions have to be fulfilled.

[0040] Additionally the speech fundamental frequency estimator in a further embodiment can be characterized in that
the analyzer is configured for modifying a speech fundamental period corresponding to said determined speech funda-
mental frequency estimate by an interpolation correction term prior of outputting a modified speech fundamental frequency
estimate, wherein said interpolation correction term is dependent on values of said first or second set of correlation
function values, of said extended set of correlation function values or said compensated first set of correlation function
values, respectively. Such an interpolation approach provides the advantage that the error terms resulting from the use
of a discrete time-frequency-transform respectively a frequency-time-transform can be reduced by a processing of the
signals after the inverse transform has been performed.

[0041] In a further embodiment of the present invention the speech fundamental frequency estimator can be charac-
terized by a frequency domain filtering unit being configured for receiving the frequency domain versions of the first and
second set of time domain signal values, for frequency domain filtering said frequency domain versions in order to obtain
said first and second sets of values, respectively, and for providing said first and second sets of values to the first and
second power density spectrum calculator respectively. Such a pre-processing of the received signals provides the

above k= Such a use of the doubled speech fundamental frequency estimate from a previous estimation
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advantage that a pre-processed version of the input signal significantly increases the reliability and preciseness of the
estimation in contrast to an embodiment of the invention in which no pre-processing is performed. However the com-
putational or numerical burden for this is relatively low, especially if the filter has a little number of coefficients.

[0042] In a further embodiment of the present invention the speech fundamental frequency estimator can be charac-
terized in that the frequency domain filtering unit is configured for filtering only frequencies below a predefined limiting
frequency. This relaxes a computational burden as only the parts of the spectrum are filtered which are of the most
importance for a reliable estimation of very low speech fundamental frequencies.

[0043] Furthermore, in another embodiment the speech fundamental frequency estimator can be characterized in that
the frequency domain filtering unit is configured for delaying values of said frequency domain versions being above said
predefined limiting frequency. This compensates a delay which might be introduced in a signal flow path for filtering
signals having a frequency below said limiting frequency.

[0044] The above mentioned aspects and modifications according to the first aspect of the present invention can also
be implemented in corresponding methods where the advantages mentioned above come into effect in an analogous
manner.

[0045] Furthermore, the invention can also be implemented as a computer program having a program code for per-
forming the inventive method, when the computer program runs on a computer.

[0046] In an embodiment of the present invention focusing the previously mentioned second aspect the speech
fundamental frequency estimator can be characterized in that the power density spectrum calculator is configured for
determining the noise suppression factor as the maximum of a predetermined maximum suppression coefficient and a
term being dependent on a quotient of the estimate of the power density spectrum of background noise and the second
power density spectrum. This provides the advantage that an additional improvement can be realized as then erroneous
detections in speech pauses can be avoided which, in turn, improves the reliability of the estimated speech fundamental
frequency. Also, it can be made sure that the noise suppression factor is always above a predefined value.

[0047] Further, the present invention according to the second aspect may comprise a speech fundamental frequency
estimator being characterized in that the power density spectrum calculator is configured for determining the estimate
of the power density spectrum of background noise in speech pauses or for determining the estimate of the power
density spectrum of background noise from a segment-wise estimation of the minima of the power of a differential signal.
This makes sure, that a minimum suppression factor is used and thus an effective suppression of background noise is
accomplished.

[0048] Furthermore, the speech fundamental frequency according to a further embodiment may be characterized in
that the noise suppression factor is defined by

y §nn Q S A4
V (eJQ";n.) = max< V. 1— 87—(’—-2)
Sy'y (Q,LH n)

wherein gnn(Qu, n) denotes the estimate of the power density spectrum of the background noise, gyy(gw n) denotes
the second power density spectrum of the input signal, V, denotes a predefined maximum attenuation factor and f3
denotes a value for overestimating the power density spectrum of the background noise.

[0049] The above mentioned aspects and modifications according to the second aspect of the present invention can
also be implemented in corresponding methods where the advantages mentioned above come into effect in an analogous
manner.

[0050] Furthermore, the invention according to the second aspect can also be implemented as a computer program
having a program code for performing the inventive method, when the computer program runs on a computer.

[0051] Additional features and advantages of the present invention will become more readily appreciated from the
following detailed description of preferred or advantageous embodiments with reference to the accompanying drawings,
in which

Figure 1 shows a time-frequency-analysis of a speech signal;

Figure 2 shows a block diagram of a multi-rate system for speech recognition having a speech fundamental fre-
quency estimation;

Figure 3 shows a block diagram of an analysis system for speech recognition having a speech fundamental fre-
quency estimation;
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Figure 4 shows a block diagram of a method and a system for speech fundamental frequency estimation;

Figure 5 shows an autocorrelation- and time-frequency-analysis of sinusoidal signals with varying frequency dis-
tances from 300 Hz to 60 Hz;

Figure 6 shows a block diagram of a system respectively method for a speech fundamental frequency estimation
with spectral refinement;

Figure 7 shows a block diagram of a system for speech fundamental frequency estimation with spectral refinement
in the lower frequency band from 0 Hz to 1000 Hz;

Figure 8 shows in the upper section the analysis of the autocorrelation and in the lower section the time-frequency
analysis of sinusoidal signals with varying frequency distances from 300 Hz to 60 Hz. The analyses have
been performed with a previous spectral refinement;

Figure 9A shows a block diagram of an embodiment of the inventive speech fundamental frequency estimator;

Figure 9B shows a flow diagram of an embodiment of the inventive method for estimating the speech fundamental
frequency estimate;

Figure 10 shows diagrams with results of the speech fundamental frequency estimation with a spectral refinement
as a time-frequency-analysis with and without noise reduction;

Figure 11A  shows a block diagram of another embodiment of the inventive speech fundamental frequency estimator;

Figure 11B  shows a flow diagram of another embodiment of the inventive method for estimating the speech funda-
mental frequency estimate;

Figure 12 shows a block diagram of a method respectively system for speech fundamental frequency estimation
with additional consideration of a passed subband input vector and spectral refinement;

Figure 13 shows in the left section the analysis of the autocorrelation function of a speech fundamental frequency
at about 270 Hz. In the right section the analysis of a low speech fundamental frequency of about 60 Hz
is shown;

Figure 14 shows in the upper section the analysis of an extended autocorrelation and in the lower section the time-

frequency-analysis of several sinusoidal signals with varying frequency distances from 300 Hz to 60 Hz.
Additionally a spectral refinement had been performed in a lower frequency range;

Figure 15 shows in the upper section the time-frequency-analysis of speech a signal with additional post-processing
and in the lower section the time-frequency-analysis of a speech signal without additional post-processing;

Figure 16 shows in the upper section the time-frequency analysis of several sinusoidal signals of equal amplitude
with varying frequency distance (partial section of the signal). In the lower section the time-frequency-
analysis of a speech signal (partial section of the signal) is shown.

[0052] Equal or similar elements may have the same reference numbers in the following description of embodiments
of the present invention.

Description of preferred embodiments

[0053] The present invention relies mainly on estimation methods based on autocorrelation function which are de-
scribed herein in advance for a better understanding. However, some aspects of the present invention are also imple-
mented in the conventional autocorrelation methods such that the description in this section is not to be considered as
state of the art.

[0054] In the following it is assumed that the speech signal s(n) will be recorded by a microphone. To this signal
background noise n(n) is often superimposed. Consequently, the microphone signal y(n) is composed by local speech
s(n) and disturbances n(n):
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y(n) = s(n) + n(n) (2)

[0055] From this signal the short-time autocorrelation function in the time domain can be estimated in a block-based
way according to

v
o

y(n —k)y(n —k+ m)
’ | 3)

Fyy(m,n) =

t~| =

k

[0056] As this short-time autocorrelation function has to be performed for a quite large region of the autocorrelation
offset m, the direct estimation requires too much effort for many applications. As in hands-free- and speech recognition
systems in multi-rate-structure nevertheless a subband transform (for example by a DFT) is calculated a approach which
requires less effort can be used here. The analysis filter bank of a multi-rate system can be described as follows:

¢  First the input signal y(n) is portioned in windowed, overlapping frame blocks [see also J. Benesty, S. Makino, J.
Chen: Speech Enhancement, Springer, Berlin, Deutschland, 2005; E. Hansler, G. Schmidt: Acoustic Echo and
Noise Control - A Practical Approach, John Wiley & Sons, Hoboken, New Jersey, USA, 2004; E. Hansler, G. Schmidt:
Topics in Acoustic Echo and Noise Control - Selected Methods for the Cancellation of Acoustic Echoes, the Reduction
of Background Noise, and Speech Processing, Springer, Berlin, Deutschland, 2006 or P. Vary, R. Martin: Digital
Speech Transmission, John Wiley & Sons, Chichester, England, 2008). In dependence of a DFT of order N (which
is actually the block length of said DFT), one frame block respectively one signal input vector y(n) is composed as
follows:

y(n) = [y(n), y(n—1), .., yin— N+ 1)]T o

e each signal input vector y(n) is weighted subsequently by a window function

h = [}2'()5 h"l: h’—N“‘l]T

(9)
and
e transformed to the frequency domain by a DFT:
N-1 .
Y (6‘7‘(2" ,'72,) — Z 1{/(71- _ A) hke—_’)Q,Lk
k=0 (6)

[0057] The sampling points . are hereby located equidistantly in the normalized frequency domain:
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27, with uefo,...,N-1} (7)

Q”N

I

[0058] From the short-time spectrum Y{(et, n) the short-time power density spectrum can be estimated by calculating
the square of the absolute value according to the following equation:

Sy (o) = |Y(@jg42“,77,)|2 = Y (8% n)Y* (7P n) )

AN
[0059] The thus determined power density spectrum S,,(€2,,n) from equation 8 is then smoothed in frequency direction
and divided by the thus obtained envelope Eyy(ﬂu,n). Hereby the short-time envelope is removed. The smoothing in
frequency direction can be described by

-~

~ i ‘S'yy(:szut ’”’) b fOI' .“’ = ()
Syy(Qu.n) = - . ,
NSy (Qu1on) + (1= A) Sy (), for pe{1,... . N1} ©)
respectively
_ ‘ Syy(Q,n) for p=N -1,
S Qo) = _ S
ASyy(Qugr.n) 4 (1= A) Sy (Q,m), for p<{0,.... N -2}

[0060] Values for the smoothing constant A are chosen from the range

03 < A < 07 (11).

[0061] Following, a linear weighting of the estimated and normalized power density spectrum is performed:

- S (0 L ;
Syworm (an) = _1/1/.(91 ’ ) %% (6]9“)
yy (s 1) (12).

[0062] The weighting function W(e*», n) has been chosen such that the attenuation rises with rising frequency. This
choice results from the fact that speech mainly at low frequencies has a speech fundamental frequency structure - which
in turn results in an improved estimation of the speech fundamental frequency. In Fig. 4 the functional principle of a
method for speech fundamental frequency estimation is shown.

[0063] The autocorrelation function
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1 N-1
7yl/(777/ 77' = /V 2 Sl/l/ norm(Q;L 72) J ,Vum
p=0 (13)

is determined by an inverse transform of the normalized and weighted power density spectrum from equation 12. The
autocorrelation function /r\yy(m,n) is used in order to estimate the speech fundamental frequency £, (n). The index m
describes herein the autocorrelation offset and the index n describes the present frame (under analysis). For each a
single frame the preliminary speech fundamental frequency f’p(n) can be determined by a search of the maximum in a
selected range of indices, for example 30 < m < 100. The speech fundamental frequency is then determined as the
reciprocal of value of the index at which the maximum of the autocorrelation has occurred (in view to the sampling
frequency f,):

e _ fb
fp(”) = W "

with

n(n) = argmax {f“yy(m;n)}
30 <m <100 ' (15)

[0064] Furthermore a reliability pfp(n) of the estimated speech fundamental frequency is determined. Therefore the
value of the normalized autocorrelation at the maximum point, (i.e. the index where the autocorrelation function becomes
maximal) is used:

72yy(’rp('n)a n)
Tyy (0, 1) 16

ps,(n)

[0065] Large values, that are values in the proximity to one, indicate a very sure detection - small values indicate a
doubtful detection. For this reason a detection only takes place for values of the normalized autocorrelation function
which are larger than p, (which is taken as a predefined threshold value):

£, for p (> py

(17)
not detectabale, else

fr(m=

[0066] A threshold value of py € [0.2,0.3] has turned out to be favourable. The value of the normalized autocorrelation
atthe location t,(n) can be of large significance as reliability information, for example for a speech signal reconstruction.
Hereby the desired value of the speech fundamental frequency can be either slowly or quickly traced, dependent on
how sure a speech fundamental frequency can be estimated.

[0067] Finally the inventive method proposed here is further presented in more detail by an example. Therefore 10
sinusoidal signals of equal amplitude are summed up. The frequencies of the sinusoidal signals have been chosen

12
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equidistantly. At the beginning of the signal a fundamental frequency of 300 Hz has been chosen, subsequently this
frequency has been decreased linearly over the time to an end value of 60 Hz. In the upper diagram of Fig. 5 the
development of the normalized autocorrelation vectors is shown and in the lower diagram of Fig. 5 a time-frequency-
analysis of the corresponding input signals y(n) is shown.

[0068] For the analysis a DFT of order N = 256 (= DFT block length), a sampling frequency of f = 11025 Hz and the
frame offset of r = 64 is used. The analysis of the autocorrelation /r\yy(m,n) has been performed in the range between
m=40 to m=128. Detection results have been considered to be well it if the reliability information pr, (n)is larger than p,
= 0.2. Finally the time-frequency analysis was considered only in the interesting frequency range up to 1000 Hz.
[0069] In the analysis of the autocorrelation it can be recognized that the speech fundamiental frequency up to an
offset of about m=95 can be estimated surely - this corresponds to a speech fundamental frequency of about f,(n) =
120 Hz (at a sampling frequency of f;=11025 Hz). The graph of this detection with decreasing frequency can also be
seen in the time-frequency-analysis up to about t=3.8 s. However, if speech fundamental frequency is below f,(n) = 120
Hz (which is often the case with men having a low speech fundamental frequency) these speech fundamental frequency
can not be determined in a reliable way.

[0070] Contrary to the approaches mentioned in the previous description of the invention the approach disclosed
subsequently has the following further advantages:

e asure and reliable estimation can also be performed for a very low voices;
e a better robustness in environments with background noise can be reached; and
e the speech fundamental frequency can be determined with a significantly higher degree of precision.

[0071] Firstly, a method for estimating the speech fundamental frequency having an additional spectral refinement is
described in more detail and it is shown how the detection robustness can be increased by a noise reduction which is
integrated in the estimation method (no pre-processing). Following an additional part of the method is presented which
enables to also detect a very low speech fundamental frequencies by an additional delay correction structure. Finally
approaches for adaptively post-processing and interpolating are disclosed which enable an error correction respectively
an improvement of the preciseness of the speech fundamental frequency. However it has to be mentioned here that all
the disclosed aspects can also be used independently such that the present invention does not only work if all the
aspects mentioned above are implemented. For example the spectral refinement can be used without using the post-
processing or the interpolation or the approach having the additional delay correction structure can be used without
using the spectral refinement approach. However all the individual aspects commonly contribute to a much improved
estimation of the speech fundamental frequency and shall be described herein as an embodiment.

Speech fundamental frequency estimation with spectral refinement

[0072] In the preceding section it has been shown that a speech fundamental frequency which is below 120 Hz can
not be estimated. In the following an approach is presented which solves the described problem.

[0073] Additionally to the already mentioned method according to the state of the art the newly proposed method uses
an additional spectral refinement of the input spectrum Y{(e%2, n) . The functional principle of this approach is disclosed
in Fig. 6. The short-time spectrum Y{(e/u, n}is firstly filtered subband-wise by an FIR-filter (FIR =finite impulse response).
Such a filtering serves the purpose to perform a more precise spectral resolution of the input spectrum Y(e/ s, n).
[0074] It was shown in Patent Application No. EP 06024940.6 that a spectral refinement within one subband can be
reached by a short FIR-filter, respectively, how the individual filter coefficients have to be determined. The disclosure
of Patent Application No. EP 06024940.6 is incorporated herein in by reference its entirety. The FIR-filter used for the
w-th subband can be described as follows:

T
g“ = [gu.,()a Gu,ls -y Qu.,M—l]
(18)

[0075] The parameter w denotes herein the p.-th frequency sampling point of a short-time spectrum V(eJ'Qu,n) having
a higher resolution and the parameter M denotes the order of the used FIR-filters. A memory length M of the short FIR-
filter is chosen between 3 and 5. For the frequency subbands of interest the spectral refinement finally can be determined
as follows:
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y'(cr'iﬂ’-‘ ,n) = Ju.0 Y(ejﬂ“,'n,.) + o gpara Y (r’p“ n— (M —=1)- l) (19)

[0076] A spectral refinement in the whole frequency range is not necessary for speech signals. Usually the speech
fundamental frequency structure is only present in the lower frequency range that means it is sufficient to perform the
refinement up to, for example, 1000 Hz. Above this threshold it is possible to only introduce a delay of (M-1)/2 samples
(down-sampled). The numerical effort necessary for such a refinement can thus be kept low. In Fig. 7 the analysis-
synthesis-system with additional calculation of the spectral refinement in a low frequency range is shown.

[0077] However, it has to be mentioned that by the calculation of a spectral refinement a low delay is introduced into
the signal path. A detailed derivation of this part of the new approach is explained in more detail in Patent Application
No. EP 06024940.6 which is incorporated herein in its entiery.

[0078] Subsequently the determination of the speech fundamental frequency can be performed analogously to the
way as already disclosed in the previously mentioned description. However, the refined short-time spectrum V(eJQu,n)

is now used in order to calculate the estimated and refined power density spectrum S’W (Qﬂ,n) according to the

following equation:

o~

Sy Q) = V(&% )T (% n) = [F@™0) o

[0079] Following the power density spectrum S};; (Qu,n) is also smoothed, weighted and the autocorrelation

function I:ﬁ (m,n) for the estimation of the speech fundamental frequency is determined. In order to calculate said

power density spectrum an approach corresponding to equations 9 to 17 can be used.

[0080] In Fig. 8 the analysis of autocorrelation as well as the time-frequency-analysis with spectral refinement is
shown. For the analyses the same parameters as previously mentioned have been used -namely a DFT of order N=2586,
a sampling of frequency fs= 11025 Hz, a frame offset of r=64 and a detection of threshold p, = 0.2. Furthermore as test
signal the same combination from sinusoidal signals have been used which have a varying frequency distance of 300
Hz to 60 Hz. The black graph in the upper diagram of Fig. 8 as well as the white graph in the lower diagram of Fig. 8
show the estimated pitch period duration, respectively; the estimate of speech fundamental frequency when using the
spectral refinement approach.

[0081] A comparison of Fig. 5 and 8 shows very clearly that the spectral refinement provides the possibility of a far
better detection of the speech fundamental frequency. Very desirable is the fact that the sure and reliable detection rises
up to an offset of m=N/2 =128 - this corresponds to a speech fundamental frequency of about 90 Hz. At lower frequencies
fp < 90 Hz several detection errors occur. Finally it has to be mentioned that in many applications it is only of interest
whether a speech fundamental frequency is present or not - an exact speech fundamental frequency would be of minor
importance. Justin these application scenarios the previously presented approach would provide significant advantages.
[0082] In the following it will be the aim to present a new approach which works robustly in terms of erroneous
estimations at very low speech fundamental frequencies. Additionally it is shown in the following section how noise
reduction can be advantageously incorporated into the presently known method.

Speech fundamental frequency estimation with noise suppression

[0083] Fig. 9A shows a block diagram of an embodiment of a speech fundamental frequency estimator 900. The
speech fundamental frequency estimator 900 comprises a power density spectrum calculator 902 and an analyzer 904.
The power density spectrum calculator 902 has 2 inputs, one for receiving a set of values and one for receiving background
noise information. The set of values )71, is a frequency-domain representation of a set of a time domain signal values
y4 in a time interval t;. The background noise information can for example be determined in speech pauses in which
only a noise signal and no speech signal is provided to the power density spectrum calculator 902. The power density
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spectrum calculator 902 has 2 outputs, one for outputting a noise suppression factor V(ei2+,n) and one for outputting
values of a power density spectrum. The analyzer 904 has 2 inputs for receiving both of the outputs of the power density
spectrum calculator 902. The analyzer 904 has a furthermore one output for outputting the determined speech funda-
mental frequency f,(n).

[0084] Thefunction ofthe speech fundamentalfrequency estimator 900 shall be described in more detail with reference
to Fig. 9B. In Fig. 9B a flow diagram of a method for estimating the speech fundamental frequency is disclosed. The
method 940 comprises a first step 950 in which a power density spectrum is provided by multiplying a version of the set
of values )72 with a complex conjugate version of the second set of values. In parallel (or in series) in a second step 952
an estimate of a power density spectrum of background noise is determined. In this step 952 of determining the estimate
of a power density spectrum of background noise the background noise information is used which may originate for
example from a speech pause detector or other means which provide only information about the background noise in
the absence of speech. In a third step 954 a noise suppression factor is determined which is explained in more detail
below. In a fourth step 956 a multiplication of the power density spectrum with the noise suppression factor V(ei€+,n) is
performed before in afifth step 958 a frequency-time-transform is accomplished. Subsequently in a sixth step 960 speech
fundamental frequency is determined from the frequency-time-transformed signal resulting in step 958.

[0085] Such an approach provides the advantage that by considering background noise information the detection
preciseness as well as in detection robustness can be improved as for example in speech pauses when only background
noise occurs no speech fundamental frequency shall be estimated. Thus, the reliability of an estimated speech funda-
mental frequency can be significantly improved. This results from the fact that the erroneous detections of speech
fundamental frequencies in speech pauses can be avoided. Furthermore the multiplication of the noise suppression
factor with the power density spectrum prior to the frequency-time-transform provides the advantage that such a multi-
plication in the frequency domain requires very little computational and numerical effort in contrast to a similar combination
in time domain. Furthermore it is also possible to additionally considered other calculations or normalizations of the
noise-compensated signal prior to said frequency-time-transform.

[0086] To be more precise, methods for the noise reduction are mostly based on modified Wiener-filters which fre-
quency response in the respective frequency intervals is determined by

—~

7 [ Spn(2,,n
V(e n) = max{V, 1-73 ,\n'"'( p 1)

Syy (2, )

(21)

(see also S. F. Boll: Suppression of Acoustic Noise in Speech Using Spectral Subtraction, IEEE Trans. Acoust. Speech
Signal Process., Vol. 27, Nr. 2, Seiten 113-120, 1979; E. Hansler: Statistische Signale - Grundlagen und Anwendungen,
Springer, Berlin, Deutschland, 2001 or T. Haulick, K. Linhard: Noise Subtraction with Parametric Recursive Gain
Curves, Proceed. of the European Conf. on Speech Communications and Technology, Vol. 6, pages 2611-2614, 1999).
The value Snn(<2,,n) denotes an estimation of the auto power density spectrum of a disturbance (background noise),
V, describes a maximal attenuation and the parameter B is used for overestimating the power density spectrum of the
disturbance. Because of the fact that the disturbance can be considered to be non-stationary a short-time estimation
value has to be used for this disturbance value. However, signal and disturbance are available only as a sum in the
microphone signal y(n). The estimation of the power density spectrum of the background noise can be obtained in two
different ways, firstly the power of the microphone signal can be estimated in speech pauses - which requires a speech
pause detector - or, secondly, that an estimated value for the power of the disturbance can be determined from the
segment-wise estimated minima of the power of the difference signal. As the noise estimation is not the main focus in
this patent application other details shall not be explained here; however reference is made to P. Vary, R. Martin: Digital
Speech Transmission, John Wiley & Sons, Chichester, England, 2006 which disclosure is incorporated herein in its
entirety by reference.

[0087] Normally, noise reductions are used as a pre-processing stage for a speech fundamental frequency estimation
that is instead of the input subband signals Y{(ef,n) the noise reduced signals Y(e*, n). V(e n) are processed.
The present approach follows a similar way that means that firstly a noise-reduced power density spectrum (see equation
12) respectively after a subsequent spectral refinement is determined according to the following equation:
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~ Sy (S0 , .
Sg.norm O(Q n) = ﬂiz”—‘n; W;(GJQ“) -V (GJQH : 71)

(22).
[0088] For detection the inverse transform is then calculated as follows:
- 0 ) ‘f\’: =um
Fyy, w(m n) N y,norm,g( g7y n)el
A t=0
’ (23)

[0089] As standardization factor the value r (O n) from the equation 16 is again used which is the standardization
value of the autocorrelation including noise. Thls results in the following modified detection

f’qyy,g(Tp(n)a n)
Tyy (0, M) (24)

pf,(n)

[0090] As aresult a more robust detection in speech pauses is obtained. In order to more clearly show this effect Fig.
10 shows results of the speech fundamental frequency estimation with spectral refinement in terms of time-frequency-
analysis with and without noise reduction. All parameters of the methods have been identical to the previously described
parameters. As can be seen very clearly erroneous detections (denoted by black ellipses in the upper diagram of Fig.
10) can be suppressed in the case when the above-mentioned active noise reduction is used. In speech activity passages
nearly nothing changes.

Speech fundamental frequency estimation on the basis of a plurality of subband vectors

[0091] In this section a further part of the approach for the inventive speech fundamental frequency estimation is
described.

[0092] Fig. 11A shows a block diagram of an embodiment of the inventive speech fundamental frequency estimator
1100. The speech fundamental frequency estimator 1100 comprises a first power density spectrum calculator 1102, a
second power density spectrum calculator 1104 and an analyzer 1106. The first power density spectrum calculator 1102
and second power density spectrum calculator 1104 are both fed by a common input of width N, on which subsequently
afirst set of values Y, and a second set of values Y, is provided. Herein, the first set of values Y; is a frequency domain
representation of a first set of time domain signal values y, within a first time interval t;. The second set of values Y, is
a frequency domain representation of a second set of time domain signal values y, within a second time interval t,. In
the embodiment as shown in Fig. 11A the first and second time intervals overlap. The first power density spectrum
calculator 1102 is configured for storing a version of the first set of values and for providing values of a first power density

spectrum Sﬁl (Q# s n) by multiplying the stored version of the first set of values )71 with a complex conjugate version

of the second set of values )72. The second power density spectrum calculator 1104 is configured for providing values

of a second power density spectrum Sy"‘v (Q n) by multiplying a version of the second set of values with a complex

e

conjugate version of the second set of values. The analyzer 1106 is configured for receiving the first and second power
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density spectrums of the first respectively second power density spectrum calculator 1102, 1104 and for determining
the speech fundamental frequency estimate fy(n) on the basis of the values of the first power density spectrum

Symy‘, (Qﬂ ) n) and the values of the second power density spectrum Sj,-}7 (Q/J ,n) .

[0093] Fig. 11B shows the functionality of the speech fundamental frequency estimator as shown in Fig. 11A in more
detail. To be more precise, Fig. 11B discloses a method 1140 for estimating the speech fundamental frequency f,(n).

Firstly, first and second sets of values )71 and )72 are provided, each of which have the number of N individual values
(that is a width of N). In a first step 1150 a version of the first set of values )71 is stored. In a second step 1152 the stored
version of the first set of values Y, it is multiplied with a version of the second set of values ¥, which are directly fed to
the multiplication step without a storing step. The result from the multiplication step 1152 is said first power density

spectrum Si’% (Q#,n). Parallel to the step of multiplying 1152 a further step of multiplying 1154 is performed in

which a versions of the second set of values )72 are multiplied with each other, which results in the second power density
spectrum. In a final step 1156 the speech fundamental frequency estimate f,(n) is determined.

[0094] The inventive approach as shown in Fig. 11A and 11B has the advantage that it is now possible to estimate
lower speech fundamental frequencies as would be possible according to the state of the art. This is mainly due to the
fact that (conventional existing) short frequency domain values can be used for a precise speech fundamental frequency
estimation as the multiplication in step 1152 with a stored respectively delayed version of a previous set of frequency
domain values results in a kind of elongated analysis time interval for estimating the low speech fundamental frequency.
However, itis also possible to correct possible errors which might result from the time offset of the first and second time
intervals because for the determination of the speech fundamental frequency estimate also the second power density
spectrum is used which is based on a multiplication of versions of the second set of values. Therefore the first power
density spectrum can be compared with the information resulting from the second power density spectrum such that a
kind of normalization can be performed or a detection of possible errors in the first power density spectrum can be
recognized and corrected.

[0095] To be more specific, in the previous description it has been shown that a speech fundamental frequency below
f,(n)<120 Hz can not be detected correctly anymore. Therefore, in the first approach a subsequent spectral refinement
has been applied. However, this spectral refinement provided the possibility for an improvement of the speech funda-
mental frequency estimation only to about f,(n)=90 Hz. The reason for this threshold can be seen in the fact that in the
used DFT of order N a maximal autocorrelation offset of m=N/2 + 1 for the analysis of this speech fundamental frequency
is possible - this corresponds to a maximally low speech fundamental frequency detection of about 90 Hz. It has been
assumed that the used power density spectra, respectively the autocorrelation functions are only real (and not complex)
and are furthermore also symmetrically.

[0096] A further inventive idea it can be seen in the fact that not only the present signal frame y(n) is used for the
estimation of the speech fundamental frequency but also a signal frame y(n-d) which is a signal frame delayed by d
clock cycles. For example the speech fundamental frequency estimation can be significantly improved by utilizing of the
present signal frame and a signal of frame delayed by one frame cycle, d = r, with an overlap of 75% - this corresponds
to a frame offset of r = 64 and a signal block length of N = 256.

[0097] In Fig. 12 the functional principle of the method for estimating the speech fundamental frequency is shown.
Additionally to the already described method the inventive approach uses a cross correlation with the delayed input

frame. Firstly it can be seen from Fig. 12 that in addition to the estimated auto power density spectrum S},}7 (Q,, , n)

in the lower path of Fig. 12 also a variant of the cross power density spectrum

~—~

Sg5a(Quyn) =Y (7% 0) V(1% n - d)
(25)

is determined too. For the determination of the cross power density spectrum SI{G (Q,, ,n) the present short-time
d

spectrum Y(ef,n) and the delayed short-time spectrum Y*(e¥, n-d) is used. In following only the short-time spectrum
delayed by one frame clock, that is d =, is dealt with further, however also other delays can be used here.
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[0098] The thus determined cross power density spectrum is divided by the smoothed auto power density spectrum

SW (Qu,n) and is multiplied with a weighting function as shown below:
d

)

giia (2, 12) W (6‘7‘§Z")

§{f‘ Q,,n)= :
gia (S m0) (o)

Ul

(26)

[0099] After a subsequent noise reduction and an inverse transform according to equation 23 the cross-correlation

A

function V5.8 (m, n) .is determined according to equation 13. In the following, the aim will be to determine an extended
autocorrelation function fﬁ,em (k,n) of order N/2 + r from the autocorrelation function Y5%,.8 (M, 1) and the cross-

A

4.8 (k, n) describes

correlation function (m, 1), each of which having the order N/2. The index k of the term fﬁ,em

herein the offset of the autocorrelation, wherein the following equation is valid:

N
ke {O., 3--{-)’—-]}

[0100] By using an adaptive compensation control it can be tried to correct the error terms of the cross-correlation

(27)

~

function Va8

(m,n). For this purpose a correction value A(m, n) is determined for each time frame in order to

compensate, for example the undesired amplitudes which occur at an offset of m=r=64, or respectively, to correct the

remaining amplitude values in order to perform a later combination with the autocorrelation function FAW ¢ (m, n) :
Figargmod (M 1) = Tg5, « (m,n) — A(m,n) = g5, g(m,n) — cln) Ty5.a( —r,n) (28)

[0101] The adaptive constant c(n) is derived from a relation of the cross correlation function 53, ¢ (m,n) at the

A

location m=r and the autocorrelation function .8 (m, n) i at the location m=0. In order to perform a robust speech

fundamental frequency estimation the relation should not be below a minimum value c,. Therefore the adaptive parameter
c(n) is determined as follows:

c(n) = max ~
29)

[0102] Tests have shown that good results can be obtained in the case the constant ¢, is set to a value of ¢4=0.4.
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[0103] Following the auto and cross-correlation coefficients of f'ﬁ'g (m,n) and Ty o mod (m,l’l) -are weighted

by a weighting function and are combined as follows:

Fiig(k:n), for 05 k<&~
Fogerw(kon) = ¢ alk - 7).k, ) + (fl —a(k — '1'))-‘1”'5!-/»4'&“10,.1(19 —rn). for For<k<y
T it ,g,mod(;" = r.n), for %‘ <h< T§ + 7

[0104] Herein the linear function a(m) was chosen such that with an increasing offset m the weight of the coefficients
reduces. The thus obtained extended autocorrelation function /r},werw(k,n) is finally used for the estimation of the speech
fundamental frequency. In comparison to the methods mentioned before the speech fundamental frequency is determined
by a search of the maximum for each single frame in an elongated area - for example in the range 30 < k < 180.
[0105] Inorder to clarify the functioning of the described method in Fig. 13 two examples for the analysis of the speech
fundamental frequency are shown. For this purpose the left section of Fig. 13 discloses the analysis of the speech
fundamental frequency at about 270 Hz whereas in the right section of Fig. 13 the analysis of a speech fundamental
frequency at about 60 Hz is shown.

[0106] In the first aspect the correlation of the present signal frame with itself (left) and with a proceeding signal frame
(right) are shown each, the left and also the right section of Fig. 13. The grey graph denotes in each section the cross

A

08 (m, n) before the adaptive compensation control and the dark grey graph denotes the cross

correlation function

correlation function fymy (n’I, n) after the adaptive compensation control. It can be well identified that significant

48 ,mod

error terms - especially the error terms at the location k = r - are corrected by the adaptive compensation control.

[0107] The lower graph in each of both sections of Fig. 13 shows the extended autocorrelation function I"‘W’em (k, I’l)

across an elongated autocorrelation offset which is generated by the composition of both correlation functions

(m, n) and P d(m,n) respectively by the usage of the equation 30. At a high speech fundamental

5.8 V¥ .g.mo

frequency the corresponding speech fundamental period can be determined and detected quite well using the autocor-

relation function 755 . (m,n) (left section of Fig. 13). In contrast, with the used low speech fundamental frequency

of about 60 Hz the corresponding speech fundamental period can not be determined any longer by the standard auto-

correlation ryy’g (m, }’l) - The right section of Fig. 13 shows in the lower part that by a combination of the correlation

of the signal frame with itself and the correlation with a proceeding signal frame the speech fundamental period can still
be determined and detected.

[0108] In Fig. 14 the analysis of the extended autocorrelation function fﬁ,em (k, }’l) is shown when a previous

spectralrefinementin the low frequentregion as well as a time-frequency-analysis of the input signal is used. A comparison
with the analyses from the Fig. 5 and 14 indicates that by using the previously described approach significant improve-
ments can be achieved. Through this approach a existing speech fundamental period up to an offset of about k= 125
can still be detected. Moreover no erroneous detections with low speech fundamental frequencies occur. Thus, a sure
and reliable estimation can be performed by the described approach down to a speech fundamental frequency of about
fo(n)= 60 Hz.
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Adaptive post-processing

[0109] At several locations erroneous estimations of the speech fundamental frequency f(n) still occur. For these
values a half, respectively a third, of the speech fundamental frequency are often estimated. A subsequent post-process-
ing is then preferably used to correct the occurring erroneous detections.

[0110] After estimation of the speech fundamental frequency f,(n) a test can be made whether this estimate is below
a threshold f,. The post-processing only shall be performed in the case the following condition

fon) < fi | (31)

is fulfilled. Values between f, = 140 Hz and f, = 160 Hz have been recognized to be suitable in practice. Subsequently
a normalized speech fundamental period is estimated by performing a search for the index of the maximum of the
autocorrelation function

Tp(n) = argnlax{f“gg,erw(k,n)}
: (32)

in a selected range

s f

. <k<—2_4 ko
fp,max 2fp (n)

(33)

[0111] For the determination of this area the previously determined speech fundamental frequency f(n) is firstly
doubled. The parameter fp,max in equation 33 is herein a predefined value of a maximal possible speech fundamental
frequency. Finally the value kj is a constant which makes sure that also a search for a maximum which is slightly above

k= L is allowed.

2f,(n)
[0112] In the case the newly determined maximum is higher than 60 percent of the previously determined maximum,
that is

Tp(n) > 0.67(n) (34)

and in the case also the amplitude of this newly determined maximum is above a predetermined amplitude value

Ti4,erw (’/: p(n)a n) > Do (35)

a correction of the previously estimated speech fundamental frequency is performed according to
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p(n) (36)

[0113] In order to clarify the improvements which result from such a post-processing, Fig. 15 shows a time-frequency-
analysis of an input signal, respectively, the detection results of the speech fundamental frequency estimation. In the
upper part of Fig. 15 the post-processing was deactivated and at two locations (at 0.7 and at 0.75 seconds) erroneous
detections (bisections of frequency) can be observed. Such erroneous detections can be corrected by the post-processing
which can be concluded from the lower part of Fig. 15.

Interpolation

[0114] In the application of the approach described up to now it could be observed that only an inaccurate speech
fundamental frequency is estimated. In the estimation results stairs-like graphs of the estimated speech fundamental
frequency have been generated as can be seen in Fig. 14 for example. Up to now it was only possible to determine the
quantized speech fundamental frequency estimate, that means when the exact speech fundamental period is in between

two autocorrelation offsets k of the autocorrelation function ;5'7 erw (k, n) then a rounding to the nearest autocorrelation
offset k is performed in order to determine the estimated speech fundamental period t,(n), respectively T,(n). Therefore

quantization errors occur.

[0115] In numerous applications, as for example for a speech signal construction, an exact speech fundamental
frequency estimation is of significant importance. One possible approach to solve the described problem is to perform
an interpolation of the estimated speech fundamental frequency which is described in more detail in the following.
[0116] For the interpolation firstly an approximated si(x)-function is used which can be written as a simple polynom
of order 2 according to the following approximation:

: 2
. Sl i
f(z) = —(2 ~1- A
T (37)

[0117] Furthermore the autocorrelation coefficient is used for the interpolation at which the extended autocorrelation

function ;)7? erw (k,n) has the maximum, and also the adjacent autocorrelation coefficients unconsidered- that is the

autocorrelation offsets left and right of the maximum. The interpolated speech fundamental period 7, . (n) can hereby
be written as a function depending on the quantized speech fundamental period rp(n) and the considered autocorrelation
coefficients according to the following equation:

Tomoa (1) = Fkt(rp(n); Fgerw ('rp( n) —1,n), P erw (Tp(-nf);'n.), T erwe (Tp(n) + 1?71)) 38)

[0118] In this context it has to be noted that if a correction according to the post-processing described in the previous
section should be performed, the value 1, (n) has to be replaced by the value T, (n). Finally the estimated and interpolated
speech fundamental period can be determined according to

Tomoa(M) = To(n) — Ap(n), a9
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wherein Ay(n) is a correction value for the quantized speech fundamental period 7,(n) which has to be determined in
every frame clock n according to the following equation:

Pgerw (To(1) +1,1) — g erw (To(n) — 1,0)

2 (7"99,61.“, (Tp(nf) +1,n) + 'ﬁgg,eiw(f'p(‘”') -1, n) — 2755 erw (Tp(ﬂ.): -n,.))

Ay(n) =
(40)

[0119] Finally the interpolation for improving the speech fundamental frequency estimation which is presented here
shall be clarified in two examples. In the upper part of Fig. 16 the time-frequency-analysis of a portion of several sinusoidal
signals of equal amplitude is shown. Contrary hereto a portion of a speech signal of a female voice is shown in the lower
part of Fig. 16. The white graph denotes the estimated quantized speech fundamental frequency in the upper as well
as also in the lower part of Fig. 16. The grey graph in the upper part respectively the black graph in the lower part
demonstrates the estimated speech fundamental frequency after the interpolation. It can be seen from the upper part
of Fig. 16 that due to the interpolation nearly the desired straight graph of the estimated speech fundamental frequency
can be obtained. In the lower part it can be seen that the estimated speech fundamental frequency of the speech
fundamental frequency structure follows the speech signal closely when the interpolation is used.

[0120] Furthermore the analysis has shown that an improvement of the speech fundamental frequency estimation of
female voices up to about 30 Hz respectively with male voices about 10 Hz can be reached in the case the previously
described interpolation is used.

[0121] Summarizing the problem presented in the introductory portion is solved presently in an approach having four
independent steps each of which contributes to the total improvement and each of which can also be implemented
independently from the others:

- For improvement of the spectral resolution short FIR-filters can be used in portions of the spectrum having low
frequencies. This results in a significant improvement for medium speech fundamental frequencies.

- After the determination of necessary scaling values a noise reduction is performed. Thus, the method becomes
more robust against background noise.

- In addition to the correlation of the actual signal frame with itself a correlation with the preceding signal frame is
also calculated. However, significant error terms are generated hereby. By means of an adaptive correlation com-
pensation those terms can be widely removed and the correlation mentioned second can thus be used for estimation
of very low speech fundamental frequencies.

- By means of a simple interpolation a more precise estimation can be obtained. Finally erroneous detections which
lead to doublings, respectively triplications, of the estimation are also corrected by means of adaptive post-process-

ing.

[0122] Expressed in other words, this invention describes a method for estimating the fundamental frequency (pitch
frequency) of speech signals. This is achieved in the DFT domain by analyzing the current input spectrum as well as
past input spectra. To achieve an - compared to standard methods - improved estimation performance a four stage
algorithm is applied or proposed whereby the steps can also be used independently: First, pre-processing (called spectral
refinement) is applied to the input spectrum at low frequencies. Second, a noise reduction is applied when computing
normalization values. Third, estimations for the autocorrelation of the current frame and cross correlation of the current
with the previous frame are adaptively combined in order to obtain an extended range. Fourth, post-processing is applied
to reduce estimation errors and to achieve an improved pitch accuracy.

Claims

1. Speech fundamental frequency estimator (1100) being configured for receiving afirst set of values ()71) andasecond
set of values ()72), the first set of values ()71) being a frequency domain representation of a first set of time domain
signal values (y4) within a first time interval (t;) and the second set of values ()72) being a frequency domain repre-
sentation of a second set of time domain signal values (y,) within a second time interval (t,), the second time interval
(tp) being later than and offset from the first time interval (t), the speech fundamental frequency estimator (1100)
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comprising:
- a first power density spectrum calculator (1102) being configured for storing a version of the first set of values

()71)andbeingconfiguredforprovidingvaluesofafirstpowerdensityspectrum (Sﬁd(an)) by multiplying

the stored version of the first set of values ()71 ) with a complex conjugate version of the second set of values ()72);
- a second power density spectrum calculator (1104) being configured for providing values of a second power

density spectrum (Sﬁ (Q# ,1)) by multiplying a version of the second set of values ()72) with a complex

conjugate version of the the second set of values ()72);
- an analyzer (1106) being configured for determining the speech fundamental frequency estimate (f,(n)) on

the basis of the values of the first power density spectrum (S};d(Q#, n)) and the values of the second
power density spectrum (S5 (€2 ,,7)).

Speech fundamental frequency estimator (1100) according to claim 1, characterized in that the first power density
spectrum calculator (1102) is configured for multiplying versions of the sets of values (Y}, Y,) which represent sets
of time domain signal values (y4, y,) having overlapping time intervals (t;, t,).

Speech fundamental frequency estimator (1100) according to claim 2, characterized in that the first power density
spectrum calculator (1102) is configured for multiplying versions of the sets of values (Y;, Y,)which represent time
domain signal values (y4, y,) having overlapping time intervals (t4, t,) of that least 25 percent.

Speech fundamental frequency estimator (1100) according to one of claims 1 to 3, characterized in that the second
power density spectrum calculator (1104) is configured for providing a conjugate complex version of the second set
of values ()72) to the first power density spectrum calculator (1102) and wherein the first power density spectrum
calculator (1102) is configured for using the provided conjugate complex version of the second set of values ()72)
as the version with which the stored a version of the first set of values ()71) is to be multiplied.

Speech fundamental frequency estimator (1100) according to any of the preceding claims, characterized in that
the analyzer (1106) is configured for performing a first frequency-time-transform of the first power density spectrum

(S,Wd (Qﬂ s n)) in order to obtain a first set of correlation function values (7:),w (m, n)) and for performing

Va8

a second frequency-time-transform of the second power density spectrum (S;7 (an)) in order to obtain a

second set of correlation function values (IA‘W'g (m, n) ), wherein the analyzer (1106) is furthermore configured

for determining a set of normalization values (S)"?P (Q n) ) and a set of weighting values (V(ef, n)) from the

"

second power density spectrum (Sﬁ (€2,,1) and for using the set of normalization values (SW (Q/l ,n))

and the set of weighting values (V(e*2, n))in the first and second frequency-time-transform and wherein the analyzer
(1106) is furthermore configured for determining the speech fundamental frequency estimate (f,(n)) on the basis of

the first and second sets of correlation function values (735, , (m,ny, V5.0 (M,1)).

Speech fundamental frequency estimator (1100) according to claim 5, characterized in that the analyzer (1106)
further comprises a compensator being configured for adaptively compensating the values of the first set of correlation

function values (r}; (m,n)) by a correction factor (A(m,n)) being based on a value of the second set of

Yd 8
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correlation function values (;ﬁ,g (m,n)) and wherein the analyzer (1106) is furthermore configured for deter-

mining the speech fundamental frequency estimate (f,(n)) on the basis of the compensated first set of correlation

function values (ryyd,g,lnod (m,n)) and the second set of correlation function values (rﬁ,g (m, n) )

Speech fundamental frequency estimator (1100) according to claim 6, characterized in that the compensator is

configured for multiplying the second set of correlation function values (";;,g (m, n) ) by a lower bounded quotient

between a value of the first set of correlation function values (’:W,,g (m,n)) and a value of the second set of

correlation function values (FW g (m,n)) in order to obtain said compensated first set of correlation function

values (;ﬁd,g,mod (m,n)).

Speech fundamental frequency estimator (1100) according to claim 7, characterized in that the analyzer (1106)

is configured for combining the compensated first set of correlation function values (;ﬁd‘g,mod (m,n)) and the

second set of correlation function values ( r (m,n)) inorder to obtain an extended set of correlation function

5.8
values (’”;;,e,w (k,n)), wherein the values of the extended set of correlation function values (IA‘W,WW (k,n) )

assume corresponding values from the compensated first set of correlation function values (’cﬁ‘,,g,mod (m, n) ),

the second set of correlation function values (;ﬁ,g (m, f’l)) or values between the compensated first set of

correlation function values (7:

5, 8.mod (M, 1)) andthe second set of correlation function values (7y; . (m,7))

and wherein the analyzer (1106) is furthermore configured for determining the speech fundamental frequency

estimate (f,(n)) on the basis of said extended set of correlation function values (IA‘W‘EN (k,n) )

Speech fundamental frequency estimator (1100) according to one of claims 5 to 8, characterized in that the
analyzer (1106) is configured for determining the speech fundamental frequency estimate (f,(n)) by searching the

index of a maximum value (t,, (n)) from the extended set of correlation function values ( };,m, (k,n) ) within a

(k,n)), from

predetermined number of indices (k) of the values of the extended set of correlation values (}:W,erw

thefirst or second set of correlation function values ( rﬁd,g (m, n) s (m, n) ) within a predetermined number

5.8
of indexes (m) of values of the first respectively second set of correlation function values

(f (m,n), (m,n))or from the compensated first set of correlation function values

Va8 55 .6

(;W,;,g,mod (m,n)) within the predetermined number of indices (m) of values of the compensated first set of

correlation function values (A (m, n)) and wherein the analyzer (1108) is furthermore configured for

rﬁ,,,g,mod
determining the speech fundamental frequency estimate (f,(n)) as the product of a sampling frequency (fs) and a
reciprocal value of said searched index (t,(n)).
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Speech fundamental frequency estimator (1100) according to claim 9, characterized in that the analyzer (1106)
is furthermore configured for determining a reliability factor (p,p(n))forthe determined speech fundamental frequency
estimate and for blocking an output of the determined speech fundamental frequency estimate (fy(n)) in the case
the determined reliability factor (pfp (m) for the determined speech fundamental frequency estimate is below a
predetermined reliability factor (pg).

Speech fundamental frequency estimator (1100) according to claim 10, characterized in that the analyzer (1106)

is furthermore configured for determining said reliability factor (p,p (n)) by dividing the maximum value (’r\p(n)) at said
AN
ryy,erw

the compensated first or second set of correlation function values

searched by the first value of the extended set of correlation function values ( (k,n)) or, respectively the first,

(;7},,.3 (m,n), Fm‘g‘mod (m,n), ;W,g (m,n)).

Speech fundamental frequency estimator (1100) according to one of claims 5 to 11, characterized in that the
second power density spectrumAcaIcuIator (1104) is configured for determining an estimate of the power density

spectrum of background noise (S,,(€2,,, n)) and for determining a noise suppression factor (W(et, n)) on the basis
AN
of said power density spectrum of background noise (S,,(€2,,n)), and wherein the analyzer (1106) is configured for

multiplying the first and second power density spectrum with said noise suppression factor (V(e 2, n)) prior to the
frequency-time-transform of the first respectively second power density spectrum

($5,(2,.m), 8$5©@,.m).

Speech fundamental frequency estimator (1100) according to claim 12, characterized in that the second power
density spectrum calculator (1104) is configured for determining the noise suppression factor as the maximum of
a predetermined maximum suppression coefficient (V) and a term being dependent on a quotient of the estimate

AN
of the power density spectrum of background noise (S,, (€2,,n) and the second power density spectrum

(S55(€2,,,n)).

Speech fundamental frequency estimator (1100) according to one of claims 12 or 13, characterized in that the
second power density spectrum calculator (1104) is configured for determining the estimate of the power density
spectrum of background noise ;\Snn(QH, n)) in speech pauses or for determining the estimate of the power density
spectrum of background noise (S,,(€2,,, n)) from a segment-wise estimation of the minima of the power of a differential
signal.

Speech fundamental frequency estimator (1100) according to one of claims 12 to 14, characterized in that the
noise suppression factor is defined by

m ('Q;L s 'I'l.)

yy ()

)| )

V(e/™.n) = max{Vp, 1-3

n

AN AN
wherein 5,,(Q,, n) denotes the estimate of the power density spectrum of the background noise, 5,,(2,,,n) denotes
the second power density spectrum, V, denotes a predefined maximum Qttenuation factor and 3 denotes a value
for overestimating the power density spectrum of the background noise (S,,,(€2,,,1)).

Speech fundamental frequency estimator (1100) according to one of claims 5 to 15, characterized in that the
analyzer (1108) is furthermore configured for reestimating the speech fundamental frequency estimate in the case
the determined speech fundamental frequency estimate is below the predefined frequency value (f,) wherein the

analyzer (106) is configured for performing the reestimation by searching a further index (k, m) of a further maximum

value (T,(n)) of the extended set of correlation function values ( ;)7? erw (k, n) ), the first or second set of correlation
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function values ( 55, g(m Vl) (m,n)) or the compensated first set of correlation function values

)'}’8

(fj}'}d,g,mod (m,n)) within a further number of values of said sets of correlation function values and for outputing

a product of a sampling frequency (f;) and a reciprocal value of said further index (’r\p(n)) as the determined speech
fundamental frequency estimate.

Speech fundamental frequency estimator (1100) according to claim 16, characterized in that the analyzer (106)
is configured for searching said index (k, m) of said further maximum value (7,(n)) using a number of values k of
said sets of correlation function values which is defined by

foocpo d5

_— + k
Fo ma 2fp(n)

wherein k denotes the number of values of said sets of correlation function values, f,(n) denotes the previously
determined speech fundamental frequency estimate, fp,max denotes a predefined value of a maximal possible speech
fundamental frequency, f; denotes a sampling frequency and k,, denotes a constant.

Speech fundamental frequency estimator (1100) according to claim 16 or 17, characterized in that the analyzer
(1108) is configured for outputting said product as the predetermined speech fundamental frequency estimate only
in the case the further index (T,(n)) is larger than 60 percent of the previously searched maximal index (t,(n)) as
(k,n)) at said

well as a value ( (n) n) ) of the extended set of correlation function values (

yy erw (Z' yy erw

further index (7,(n)) is larger than a previously defined amplitude value (Po)-

Speech fundamental frequency estimator (1100) according to one of claims 5 to 18, characterized in that the
analyzer (1106) is configured for modifying a speech fundamental period (%,(n)) corresponding to said determined
speech fundamental frequency estimate by a interpolation correction term (A,(n)) prior of outputing a modified
speech fundamental frequency estimate (fp(n)), wherein said interpolation correction term (Ap) is dependent on
(m,n), 7

values of said first or second set of correlation function values ( (m, n)), of said extended set

VVa.8 ’yyg

of correlation function values (7 . .erw(£2M))  or said compensated first set of correlation function values
( 155, .8.mod (m,n)), respectively.

Speech fundamental frequency estimator (1100) according to one of claims 1 to 19, characterized by a frequency
domain filtering unit being configured for receiving the frequency domain versions (Y, Y5) of the first and second
set of time domain signal values (Y4, y»), for frequency domain filtering said frequency domain versions in order to
obtain said first and second sets of values ()71, )72), respectively, and for providing said first and second sets of
values ()71, )72) to the first and second power density spectrum calculator respectively.

Speech fundamental frequency estimator (1100) according to claim 20, characterized in that the frequency domain
filtering unit is configured for filtering only frequencies below a predefined limiting frequency.

Speech fundamental frequency estimator (1100) according to claim 21, characterized in that the frequency domain
filtering unit is configured for delaying values of said frequency domain versions being above said predefined limiting

frequency.

Method (1140) for estimating a speech fundamental frequency (f,(n)), the method using a first set of values ()71)
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and a second set of values ()72), the first set of values ()71) being a received frequency domain representation of a
first set of time domain signal values (y,) within a first time interval (t;) and the second set of values ()72) being a
received frequency domain representation of a second set of time domain signal values (y,) within a second time
interval (t,), the second time interval (t,) being later than and offset from the first time interval (t), the method for
estimating the speech fundamental frequency (f,(n)) comprising the steps of:

- storing (1150) a version of the first set of values ()71) and providing values of a first power density spectrum

(S}Ty”d(an)) by multiplying (1152) the stored version ofthefirstsetofvalues()71)with acomplex conjugate

version of the second set of values ()72);

- providing values of a second power density spectrum ( S’;,y (Q n) ) by multiplying (1153) a version of the

a2
second set of values ()72) with a complex conjugate version of the second set of values ()72);
- determining (1156) the speech fundamental frequency estimate (f,) on the basis of the values of the first power

density spectrum (Sﬁd (Q,, , n) ) and the values of the second power density spectrum (Sﬁ (Q,, ,hn)).

24. Method (1140) according to claim 23, characterized in that the step of determining (1156) the speech fundamental

frequency estimate (f,(n)) comprises:
» performing a first frequency-time-transform of the first power density spectrum (S,Vfd (Qﬂ,n)) in order to

obtain a first set of correlation function values (rﬁd,g (m, n) )

» performing a second frequency-time-transform of the second power density spectrum (S,W (Qﬂ, n)) in

order to obtain a second set of correlation function values ( r (m, l’l) ), wherein the step of determining

5.8
(1156) further comprises determining a set of normalization values (Eﬁ (Q#, n)) and a set of weighting

values (V(et, n)) from the second power density spectrum (S)7)7 (Q# 5 n) and using the set of normalization

n) ) .and the set of weighting values (V{e %, n)) in the first and second frequency-time-

values (:S'“j,-}7 (Q

transform and wherein the determination of the speech fundamental frequency estimate (f,(n)) is performed on

"

the basis of the first and second sets of correlation function values (rﬁ,: e (m,n), ;;;;,g (m,n)).

25. Method (1140) according to claim 24, characterized in that the step of determining (1156) the speech fundamental

frequency estimate (f,(n)) comprises adaptively compensating the values of the first set of correlation function values

(Fﬁd g (m, n)) by a correction factor (A(m,n)) being based on a value of the second set of correlation function

values ( ’A’yy,g (m,n)) inordertoobtaina compensated first set of values and determining the speech fundamental
frequency estimate (f,(n)) on the basis of the compensated first set of correlation function values

(7

57,.¢.mod (M, 1) ) and the second set of correlation function values (P50 (M,1)).

26. Method (1140) according to claim 25, characterized in that the step of compensating comprises multiplying the
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second set of correlation function values (fﬁ 2 (m, n) ) by a lower bounded quotient between a value of the first

set of correlation function values (’:Wu 2 (m,n)) and a value of the second set of correlation function values

(;ﬁ,g (m,n)} in order to obtain said compensated first set of correlation function values (fﬁ‘,,g,mod (m,n)).

Method (1140) according to claim 26, characterized in that the step of determining (1156) the speech fundamental
frequency estimate (f,(n)) comprises combining the compensated first set of correlation function values

(7 g.mod (m,n)) and the second set of correlation function values (7 , (#,7)) in order to obtain an ex-

V4 rﬁyg
tended set of correlation function values (fﬁ .. (k,n)), wherein the values of the extended set of correlation

A

function values (7,

(k,n)) assume corresponding values from the compensated first set of correlation func-

tion values (f’ﬁd emod (M,7)), the second set of correlation function values (75 , (#,1) ) or values between

5.
the compensated first set of correlation function values (rﬁd'g,mod (m, ”1)) and the second set of correlation

function values ( ’:7}7 g (m, n) ) and wherein step of determining (1156) the speech fundamental frequency estimate

(fo(n)) further comprises determining the speech fundamental frequency estimate (f,(n)) on the basis of said extended

set of correlation function values (735 ., (k,1) ).

Method (1140) according to one of claims 23 to 27, characterized in that the step of determining (1156) the speech
fundamental frequency estimate (f,(n)) comprises determining the speech fundamental frequency estimate (f,,(n))

by searching the index of a maximum value (t,(n)) from the extended set of correlation function values

( 5% ene (k, 7’1) ) within a predetermined number of indices (k) of the values of the extended set of correlation values

(755 0 (K51) ), fromthe first or second set of correlation function values (5,0 (M, 1), ;'yj,,g(m,n)) within

a predetermined number of indexes (m) of values of the first respectively second set of correlation function values

(rﬁl‘g(m,n), rﬁ,g(m,n)) or from the compensated first set of correlation function values

(7

35.4.8.mod (m,n))  within the predetermined number of indices (m) of values of the compensated first set of

correlation function values ( rﬂ‘ﬁd,g’mod (m, n) ) and wherein the step of determining (1156) the speech fundamental

frequency estimate (f,(n)) furthermore comprises determining the speech fundamental frequency estimate (f,(n))
as the product of a sampling frequency (fs) and a reciprocal value of said searched index (7, (n)).

Method (1140) according to claim 28, characterized in that the step of determining (1156) the speech fundamental
frequency estimate (f,(n)) comprises determining a reliability factor (p,p(n)) for the determined speech fundamental
frequency estimate (f,(n)) and for blocking an output of the determined speech fundamental frequency estimate (f,,
(n)) in the case the determined reliability factor (pfp (n)) for the determined speech fundamental frequency estimate
(fo(n)) is below predetermined reliability factor (pg).

Method (1140) according to claim 29, characterized in that the step of determining (1156) the speech fundamental

frequency estimate (f,(n)) comprises determining said reliability factor (pfp(n)) by dividing the maximum value (7,
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(m) at said searched by the first value of the extended set of correlation function values ( 5. m,(k,n)) or,

respectively the first, the compensated first or second set of correlation function values

(7 yy,g(m ny, yy,gmod (m,n), yyg(m,n)).

Method (1140) according to one of claims 23 to 30, characterized in that the step of providing values of a second

power density spectrum (S}.)7 (Qﬂ s n) ) comprises determining an estimate of the power density spectrum of

background noise (gnn(QH, n)) and deter/\mining a noise suppression factor (V(e!,n)) on the basis of said power
density spectrum of background noise (5,,,(€2,, n)), and the step of determining (1156) the speech fundamental
frequency estimate (fy(n)) comprises multiplying the first and second power density spectrum with said noise sup-
pression factor (V(ef, n)) prior to the frequency-time-transform of the first respectively second power density

spectrum (SWd(Q#’n) , ‘SA'W (Q#,n) ).

Method (1140) according to claim 31, characterized in that the step of providing values of a second power density
spectrum ( Sﬁ (Qﬂ 5 n) ) comprises determining the noise suppression factor as the maximum of a predetermined

maximum suppression coefficient (V) and a term being dependent on a quotient of the estimate of the power density

N ,.
spectrum of background noise (S,,,(€2,,, n)) and the second power density spectrum (S;}7 (Q# ,n) ).

Method (1140) according to claim 32, characterized in that the step of providing values of a second power density

spectrum ( Sm (Q” s n) ) comprises determining the estimate of the power density spectrum of background noise

(
(

S,,n (€2,, m) in speech pauses or for determining the estimate of the power density spectrum of background noise
AN
Spn (., M) from a segment-wise estimation of the minima of the power of a differential signal.

Method (1140) according to one of claims 31 to 33, characterized in that the noise suppression factor is defined by

~

V(e# . n) = max{Vp, 1~ 'JTUP(—QM

Sy (Qp.n)

AN
wherein S,,(€,,, n) denotes the estimate of the power density spectrum of the background noise, S A8, n) denotes
the second power density spectrum, V, denotes a predefined maximum Qttenuation factor and denotes a value
for overestimating the power density spectrum of the background noise (S,,(2,,, n)).

Method (1140) according to one of claims 24 to 34, characterized in that the step of determining (1156) the speech
fundamental frequency estimate (f,(n)) comprises reestimating the speech fundamental frequency estimate (f,(n))

in the case the determined speech fundamental frequency estimate is below the predefined frequency value (f,)
wherein the step of determining (1156) the speech fundamental frequency estimate (f,(n)) comprises performing
the reestimation by searching a further index (k, m) of a further maximum value (7,(n)) of the extended set of

correlation function values (yyem(k,n)), the first or second set of correlation function values

V5, g( n) 55,0 (m: n)) or the compensated first set of correlation function values (fﬁd,g,mod (m, n))

within a further number of values of said sets of correlation function values and outputing a product of a sampling
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frequency (fs) and a reciprocal value of said further index (7,(n)) as the determined speech fundamental frequency
estimate.

Method (1140) according to claim 35, characterized in that the step of determining (1156) the speech fundamental
frequency estimate (f,(n)) comprises searching said index (k, m) of said further maximum value (%,(n)) using a
number of values k of said sets of correlation function values which is defined by

fo oo _Is

<k < s g
](p,max pr (n)

wherein k denotes the number of values of said sets of correlation function values, f,(n) denotes the previously
determined speech fundamental frequency estimate, fp,max denotes a predefined value of a maximal possible speech
fundamental frequency, f; denotes a sampling frequency and k, denotes a constant.

Method (1140) according to one of claims 35 or 36, characterized in that the step of determining (1156) the speech
fundamental frequency estimate (f,(n)) comprises outputing said product as the predetermined speech fundamental

frequency estimate (f,(n)) only in the case that the autocorrelation function at the further index (7,(n)) is larger than
60 percent of the autocorrelation function at the previously searched maximal index (t,(n)) as well as the value

(fﬁ,w (7, (n), n)) of the extended set of correlation function values (7 Fig erw (k,n)) atsaid further index (7,

(n)) is larger than a previously defined amplitude value (By).

Method (1140) according to one of claims 24 or 37, characterized in that the step of determining the speech
fundamental frequency estimate (f,(n)) comprises modifying a speech fundamental period (%,(n), 7,(n)) correspond-
ing to said determined speech fundamental frequency estimate (f,,(n)) by a interpolation correction term (Ay(n)) prior
of outputing said speech fundamental frequency estimate (f,(n)), wherein said interpolation correction term (A,(n))

is dependent on values of said first or second set of correlation function values ( V55, ¢ (m, 1’1) 5.8 (m,n)),

said extended set of correlation function values ( o (k,n)) orsaid compensated firstset of correlation function

w.erw

values (Fir_gl,‘g'mod (m,n)), respectively.

Method (1140) according to one of the preceding claims, characterized in that the method further comprises a
step of receiving the frequency domain versions (Y4, Y5) of the first and second set of time domain signal values
Yy, Yo)s frequency domain filtering said frequency domain versions in order to obtain said first and second sets of
values (Y1 , Y2) respectively, and providing said first and second sets of values (Y1, Y2) the first and second power
density spectrum calculator respectively.

Method (1140) according to claim 39, characterized in that the step of frequency domain filtering is only performed
for frequencies below a predefined limiting frequency.

Method (1140) according to claim 40, characterized in that the step of frequency domain filtering comprises
delaying values of said frequency domain versions being above said predefined limiting frequency.

Computer program having a program code for performing the method according to one of claims 23 to 41, when
the computer program runs on a computer.’

Speech fundamental frequency estimator (900), being configured for receiving a set of values ()71 ), the set of values
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()71) being a frequency domain representation of a set of time domain signal values ()71) within a time interval (t,),
the speech fundamental frequency estimator (900) comprising:

- a power density spectrum calculator (902) being configured for providing values of a power density spectrum
(S5 (€2
of values (\72), wherein the power density spectrum calculator (902) is configured for determining an estimate
of the power density spectrum of background noise (S,,(€2,,,n)) and for determining a noise suppression factor

s n)) by multiplying a version of the set of values ()72) with a compley conjugate version of the set

. AN
(V(efl.,n)) on the basis of said power density spectrum of background noise (S, (€,, M);
- an analyzer (904) being configured multiplying the power density spectrum (.Sh’y7 (Qﬂ, n) ) - with said noise
suppression factor (V(ef,n)) and for performing a frequency-time-transform of the multiplied values of the

power density spectrum ( SF} (€2,,,1)) inorder to obtain a set of correlation function values (75 (k,m)),

wherein the analyzer (904) is furthermore configured for determining the speech fundamental frequency estimate

(fp(n)) on the basis of the set of correlation function values (i:;,; (k, VI) )

Speech fundamental frequency estimator (900) according to claim 43, characterized in that the power density

spectrum calculator (902) is configured for determining the noise suppression factor as the maximum of a prede-

termined maximum suppression coefficient (V) and a term being dependent on a quotient of the estimate of the
AN

power density spectrum of background noise (S,,(Q

(S55(C2,,,m)).

. M) and the second power density spectrum

Speech fundamental frequency estimator (900) according to one of claims 43 or 44, characterized in that the
power density spectrum calculator (902) is configured for determining the estimate of the power density spectrum
of background noise (S,,(€2,, n)) in speech pauses or for determining the estimate of the power density spectrum
of background noise (S, (€2, n)) from a segment-wise estimation of the minima of the power of the differential signal.

Speech fundamental frequency estimator (900) according to one of claims 43 to 45, characterized in that the noise
suppression factor is defined by

1% (e:jQ",n) = max<{Vp. 1-2 :
(1)

Un| S

o

AN AN
wherein 5,,(€,, n)denotes the estimate of the power density spectrum of the background noise, S, (€2, n) denotes
the second power density spectrum, V, denotes a predefined maximum Qttenuation factor and 3 denotes a value
for overestimating the power density spectrum of the background noise (S,,,(€2,,,n)).

Method (940) for estimating a speech fundamental frequency (f,(n)), the method being configured for receiving a
set of values (Y;), the set of values (Y;) being a frequency domain representation of a set of time domain signal
values (y4) within a time interval (t,), the method comprising the steps of:

* providing (950) values of a power density spectrum (Sﬁ (Q#,H)) by multiplying a version of the set of

values ()72) with a a complex conjugate version of the set of values ()72),

* determining (952) an estimate of the power density spectrum of background noise (S,,(€2,,,n)) and determining
(5/)\54) a noise suppression factor (V(e/'QM,n)) on the basis of said power density spectrum of background noise

(Snn (QW n));
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» multiplying (956) the power density spectrum (SW (Q# . n) ) with said noise suppression factor ( V(e ., n));

» performing (958) a frequency-time-transform of the multiplied values of the power density spectrum

(Sﬁ (Q# ,1)) in order to obtain a set of correlation function values (fﬁ (k,n)) and

* determining (960) the speech fundamental frequency estimate (f,) on the basis of the set of correlation function

values (fﬁ (k,n)).

Method (940) for estimating a speech fundamental frequency according to claim 47, characterized in that the step
of determining (952) a noise suppression factor (V(ef,n)) comprises determining the noise suppression factor as
the maximum of a predetermined maximum suppression coefficient (VO)Aand a term being dependent on a quotient
of the estimate of the power density spectrum of background noise (5,,,(€2,,n)) and the second power density

spectrum ( S‘W (Qy , n) )

Method (940) according to claim 48, characterized in that the step of determining (952) a noise suppression factor
(V(ef, n)) comprises determining the estimate of the power density spectrum of background noise (Spn(Q2,,n))in
speech pauses or determining the estimate of the power density spectrum of background noise (S,,(€,,, n)) from
a segment-wise estimation of the minima of the power of the differential signal.

Method (940) according to claim 49, characterized in that the step of determining (952) noise suppression factor
(V(e*,n)) is characterized in that the noise suppression factor is defined by

-

VvV (e] {'Z;L:'n.) = max L’b} 1 — ﬁM

'y

Syy(£2,.m)

A A
wherein S, (Q,, n) denotes the estimate of the power density spectrum of the background noise, Syy (Qy s n)
denotes the second power density spectrum, V, denotes a predefined maximum attenuation factor and 3 denotes

AN
a value for overestimating the power density spectrum of the background noise (S,, (€2,,n)).

Computer program having a program code for performing the method according to one of claims 47 to 50, when
the computer program runs on a computer.

Amended claims in accordance with Rule 137(2) EPC.

1. Speech fundamental frequency estimator (1100) being configured for receiving a first set of values ()71) and a
second set of values ()72), the first set of values ()71) being a frequency domain representation of a first set of time
domain signal values (y4) within a first time interval (t,) and the second set of values ()72) being a frequency domain
representation of a second set of time domain signal values (y,) within a second time interval (t,), the second time
interval (t,) being later than and offset from the first time interval (t;), the speech fundamental frequency estimator
(1100) comprising:

- a first power density spectrum calculator (1102) being configured for storing a version of the first set of values
(Y1) and being configured for providing values of a first power density spectrum (S, (€2,,,n) by multiplying the
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stored version of the first set of values (371) with a complex conjugate version of the second set of values (372)'
- a second power densrty spectrum calculator (1104) being configured for provrdlng values of a second power
density spectrum (S,,(€,,, n)) by multiplying a version of the second set of values (Y2) with a complex conjugate
version of the the second set of values (Y2)

- an analyzer (1106) being configured for determining the speech fundamental frequency estimate (f,(n)) on
the basis of the values of the first power density spectrum (S,,4(€2,.n)) and the values of the second power
density spectrum (S,,(€,,,)),

wherein the analyzer is further configured

for performing a first frequency-time- transform of the first power density spectrum (
a first set of correlation function values ( vya,g (M. M), A

for performing a second frequency-time-transform of the second power density spectrum (S,,(€2,,, n)) in order to
obtain a second set of correlation function values ( yyg( n)), and

for determining the speech fundamental frequency estimate (f,(n)) on the basis of the first and second sets of
correlation function values ( m,n)).

A

vya (€,,, M) in order to obtain

y}’dg( n), 1, ,V,Vg (

2. Speech fundamental frequency estimator (1100) according to claim 1, characterized in that the first power
density spectrum calculator (1102) is configured for multiplying versions of the sets of values ( Y;, Y5) which represent
sets of time domain signal values (y4, y») having overlapping time intervals (ty, t5).

3. Speech fundamental frequency estimator (1100) according to claim 2, characterized in that the first power
density spectrum calculator (1102) is configured for multiplying versions of the sets of values (Y5, Y5) which represent
time domain signal values (y4, y,) having overlapping time intervals (t;, t,) of that least 25 percent.

4. Speech fundamental frequency estimator (1100) according to one of claims 1 to 3, characterized in that the
second power density spectrum calculator (1104) is configured for providing a conjugate complex version of the
second set of values (372) to the first power density spectrum calculator (1102) and

wherein the first power density spectrum calculator (1102) is configured for using the provided conjugate complex
version of the second set of values (372) as the version with which the stored a version of the first set of values (371)
is to be multiplied.

5. Speech fundamental frequency estimator (1100) according to any of the preceding claims, characterized in that
the analyzer (1108) is configured for performing a first frequency-time- transform of the first power density spectrum
(Syyd (€2,, n) in order to obtain a first set of correlation function valyes ( Yyag (M M) and for performing a second
frequency -time-transform of the second power density spectrum (S y(€2,, M) in order to obtain a second set of
correlation function values (7, ( Yy, (M:N)), wherein the analyzer (1106) is furthermore configured for determining a set
of normalization values (S A2, n) anda set of weighting values (V(eX2,n)) from the second power density spectrum
(8,,(€,,n) and for using the set of normalization values (S, (€2,,n)) and the set of weighting values (V(e’,n)) in
the first and second frequency-time-transform and wherein the analyzer (11086) is furthermore configured for deter-
mining the speech fundamental frequency estimate (f,(n)) on the basis of the first and second sets of correlation
function values ( yydg( n),r, yyg (m, n)).
6. Speech fundamental frequency estimator (1100) according to claim 5, characterized in that the analyzer (11086)
further comprises a compensator being configured for adaptively compensating the values of the first set of correlation
function values (? va,gtM: M) by a correction factor (A(m,n)) being based on a value of the second set of correlation
function values (r,,, ,(m,n)) and wherein the analyzer (1106) is furthermore configured for determining the speech
fundamental frequency estimate (f,(n)) on the basis of the compensated first set of correlation function values
( Yya.g.mod (M, N)) and the second set of correlation function values (?yy,g (m,n)).
7. Speech fundamental frequency estimator (1100) according to claim 6, characterized in that the compensator
is configured for multiplying the second set of correlation fun/ctlon values (r, ( wy.g (M, n)) by a lower bounded quotient
between a value of the first set of correlation function values (r,,,, . (m, n)) and a value of the second set of correIation
function values ( m,n)) in order to obtain said compensated f|rst set of correlation function values (
(m, n)).

yy.g ( yyd.g.mod

8. Speech fundamental frequency estimator (1100) according to claim 7, characterlzed in that the analyzer (1106)
is configured for combining the compensated first set of correlation function values (r; ( Yya.g,mock /M) and the second

set of correlation function values (r; ( (m, n)) in order to obtain an extended set of correlation function values (A

yy.g yy,en/v
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(k,n)), wherein the values of the extended set of correlation function values ( vy.erw (K, 1)) assume corresponding
values from the compensated first set of correlation function values (Ayydg mod (M,1)), the second set of correlation
function values ( vy.g (M, N)) or values between the compensated first set of correlation function values ( Vya.g.mod
(m,n)) and the second set of correlation function values (r, ( V.9 (M, N)) and wherein the analyzer (1106) is furthermore
configured for determining the speech fundamental frequency estimate (f,(n)) on the basis of said extended set of
correlation function values ( vy,.erd K1)
9. Speech fundamental frequency estimator (1100) according to one of claims 5 to 8, characterized in that the
analyzer (1106) is configured for determining the speech fundamental frequency estlmate (fo(n)) by searching the
index of a maximum value (t,(n)) from the extended set of correlation function values (ry erw,(k,m) within a pre-
determined number of indices (k) of the values of the exte\nded set of correlation values (r,, o,(k.n)), from the first
or second set of correlation function values (r; yydg( n), Ty, o(m,m) within a predeterminedAnumber of indexes (m)
of values of the first respectively second set of correlation function values (r,,, , (m, n), r,, , (m,n)) or from the
compensated first set of correlation function values ( vyd.gmod (M, 1)) w/i\thin the predetermined number of indices
(m) of values of the compensated first set of correlation function values ("yy4.0, moa (M, N)) and wherein the analyzer
(1106) is furthermore configured for determining the speech fundamental frequency estimate (f,(n)) as the product

of a sampling frequency (f) and a reciprocal value of said searched index (t,(n)).

10. Speech fundamental frequency estimator (1100) according to claim 9, characterized in that the analyzer (1106)
is furthermore configured for determining a reliability factor (p,p(n)) for the determined speech fundamental frequency
estimate and for blocking an output of the determined speech fundamental frequency estimate (fy(n)) in the case
the determined reliability factor (pfp(n)) for the determined speech fundamental frequency estimate is below a pre-
determined reliability factor (pg).

11. Speech fundamental frequency estimator (1100) according to claim 10, characterized in that the analyzer
(11086) is furthermore configured for determining said reliability factor (p,p (n)) by dividing the maximum value (7,
(nm) at said searched index by the first value of the extended set of correlation function values (? (k,nm) or

yy.gw
respectively the first, the compensated first or second set of correlation function values (/r\yydg (m, n), 1y g moa (M
(m,n)).

A
), fyyg

12. Speech fundamental frequency estimator (1100) according to one of claims 5 to 11, characterized in that the
second power density spectrumAcaIcuIator (1104) is configured for determining an estimate of the power density
spectrum of background noise (5,,,(€2,,,n)) and for determining a noise suppression factor (V(ef2,n)) on the basis
of said power density spectrum of background noise (S,,(€2,,n)), and wherein the analyzer (1106) is configured for
multiplying the first and second power density spectrum with said noise suppressiop factor (V(thL n)) prior to the
frequency-time-transform of the first respectively second power density spectrum ( yyd(QWn yy(Qu’ n))

13. Speech fundamental frequency estimator (1100) according to claim 12, characterized in that the second power
density spectrum calculator (1104) is configured for determining the noise suppression factor as the maximum of
a predetermined maximum suppression coefficient;\Vo) and a term being dependent on a quotient of tt]\e estimate
of the power density spectrum of background noise (S, (2,,,1) and the second power density spectrum (S, (€2,,,1)).

14. Speech fundamental frequency estimator (1100) according to one of claims 12 or 13, characterized in that
the second power density spectrym calculator (1104) is configured for determining the estimate of the power density
spectrum of background noise g\Snn (€2,, n)) in speech pauses or for determining the estimate of the power density
spectrum of background noise (S, (€2,,,n)) from asegment-wise estimation of the minima of the power of a differential
signal.

15. Speech fundamental frequency estimator (1100) according to claim 13 or claims 13 and 14, characterized in
that the noise suppression factor is defined by

3 bnn(Q/L ")

1% (ef"Q",n) = max< Vg, 1 —
uz/(s Le.n)

AN AN
wherein 5,,(,,,n) denotes the estimate of the power density spectrum of the background noise, 5,,(<2,,,n) denotes
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the second power density spectrum, V, denotes a predefined maximum attenuation factor and 3 denotes a value
for overestimating the power density spectrum of the background noise (S,,,(€2,,,1)).

16. Speech fundamental frequency estimator (1100) according to one of claims 5 to 15, characterized in that the
analyzer (1108) is furthermore configured for reestimating the speech fundamental frequency estimate in the case
the determined speech fundamental frequency estimate is below the predefined frequency value (f,) wherein the
analyzer (108) is configured for performing the reestimation by searching a further index (k, m) of a further maximum
value (T p( n)) of th\e extended set of correlation function values ( yy.erdk.N), the first or second set of correlation
function values (r,,,, o (m, n), yy}g( n)) or the compensated first set of correlation function values ( ydgmod(

n)) within a further number of values of said sets of correlation function values and for outputing a product of a
sampling frequency (f) and a reciprocal value of said further index (T,(n)) as the determined speech fundamental

frequency estimate.

17. Speech fundamental frequency estimator (1100) according to claim 16, characterized in that the analyzer
(108) is configured for searching said index (k, m) of said further maximum value (T,(n) using a number of values
k of said sets of correlation function values which is defined by

p

—L <k< —f—s———
f p,max 2fp (7 L)

wherein k denotes the number of values of said sets of correlation function values, f,(n) denotes the previously
determined speech fundamental frequency estimate, fp,max denotes a predefined value of a maximal possible speech
fundamental frequency, f; denotes a sampling frequency and k, denotes a constant.

+ ko

18. Speech fundamental frequency estimator (1100) according to claim 16 or 17, characterized in that the analyzer
(1108) is configured for outputting said product as the predetermined speech fundamental frequency estimate only
in the case the further index (T,(n)) is larger than 60 percent of the previously searched maximal index (t,(n)) as
well as a value (r, ( v,erlTp(1),1)) of the extended set of correlation function values (. ( k,n)) at said further index
(Tp(n) is larger than a previously defined amplitude value (Po)-

yy,erw (

19. Speech fundamental frequency estimator (1100) according to one of claims 5 to 18, characterized in that the
analyzer (1106) is configured for modifying a speech fundamental period (’r\p(n)) corresponding to said determined
speech fundamental frequency estimate by a interpolation correction term (A,(n)) prior of outputing a modified
speech fundamental frequency estimate (fp(n)), wherein said |nterpolation correction term (A,) is dependent on
values of said first or second set of correlation function values ( yydg( n), ?yy,g(m,n)), of said exte\nded set of
correlation function values ( vy.erAK, 1)) OF said compensated first set of correlation function values (1, o moq (M
n)), respectively.

20. Speech fundamental frequency estimator (1100) accordingtoone of claims 1 to 19, characterized by afrequency
domain filtering unit being configured for receiving the frequency domain versions (Y4, Y,) of the first and second
set of time domain signal values (y4, y»), for frequency domain filtering said frequency domain versions in order to
obtain said first and second sets of values ()71, )72), respectively, and for providing said first and second sets of
values ()71, )72) to the first and second power density spectrum calculator respectively.

21. Speech fundamental frequency estimator (1100) according to claim 20, characterized in that the frequency
domain filtering unit is configured for filtering only frequencies below a predefined limiting frequency.

22. Speech fundamental frequency estimator (1100) according to claim 21, characterized in that the frequency
domain filtering unit is configured for delaying values of said frequency domain versions being above said predefined
limiting frequency.

23. Method (1140) for estimating a speech fundamental frequency (fo(n)), the method using a first set of values ()71)

and a second set of values (Y2) the first set of values (Y1) being a rece|ved frequency domain representation ofa
first set of time domain signal values (y4) within a first time interval (t,) and the second set of values (Y2) being a
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received frequency domain representation of a second set of time domain signal values (y,) within a second time
interval (t,), the second time interval (t,) being later than and offset from the first time interval (t), the method for
estimating the speech fundamental frequency (f,(n)) comprising the steps of:

- storing (1150) a version of the first set of values (Y1) and providing values of a first power density spectrum
(S,V,Vd (€2, n) by multiplying (1152) the stored version of the first set of values (Y1) with a complex conjugate
version of the second set of values (Y2) A

- providing values of a second power density spectrum (§,,(€2,,, n)) by multiplying (1 153) a version of the second
set of values (Y2) with a complex conjugate version of the second set of values (Y2)

- determining (1156) the speech fundamental frequency estimate (f,) on the basis of the yalues of the first power
density spectrum (S, (€2,,n)) and the values of the second power density spectrum (S,,(€,,.n)),

wherein the step of determining the speech fundamental frequency estimate (f,(n)) comprises

performing a first frequency-time- transform of the first power density spectrum (§yy(ou n)) in order to obtain a

first set of correlation function values ( Wa.g (ML), A

performing a second frequency-time-transform of the second power density spectrum (§,,(Q, ,n)) in order to

obtain a second set of correlation function values ( yyg( n)), and

determining the speech fundamentaI frequency estimate (f,(n)) on the basis of the first and second sets of

correlation function values ( yydg( n), 1, g (M, n)).

24. Method (1140) according to claim 23, characterized in that the step of determining (1156) the speech funda-

mental frequency estimate (f,(n)) comprises:
» performing a first frequency-time- transform of the first power density spectrum (Ay},d
a first set of correlation function values ( Yyag (M M); A
» performing a second frequency-time-transform of the second power density spectrum (S,,(€2,,n)) in order to
obtain a second set of correlation function values ( mg( n)), wherein the step of determining (1156) further
comprises determining a set of normalization values (Sj; (Q ,n)) and a set of weighting values (V(e*2, n)) from
the second power density spectrum (S,,(€2,,, n) and using the set of normalization values (§yy (€,,n) and the
set of weighting values (V(ef,n)) in the first and second frequency-time-transform and wherein the determi-
nation of the speech fundamental frequency estimate (f,(n)) is performed on the basis of the first and second
sets of correlation function values ( m, n))

(€2, M) in order to obtain

Yyd.g (m,n), yy,g(

25. Method (1140) according to claim 24, characterized in that the step of determining (1156) the speech funda-
mental frequency estimate (f,(n)) comprises adaptively compensating the values of the first set of correlation function
values (r, ( va,g (M, M) by a correct|on factor (A(m,n)) being based on a value of the second set of correlation function
values (r,, (m,n)) in order to obtain a compensated first set of values and determining the speec\h fundamental
frequency estimate (f,(n)) on the basis of the compensated first set of correlation function values (,,,, o moq (M, 1))
and the second set of correlation function values (ng (m, n).

26. Method (1140) according to claim 25, characterized in that the step of compensating comprises multiplying
the second set of correlation functl/on values ( V. (M. M) by a lower bounded quotient between a value of the first
set of correlation function values ( n)) and a value of the second set of correIat|on function values (

"yy,ag M
n)) in order to obtain said compensated f|rst set of correlation function values ( 77, gmod (M:N)).

Yy 9(

27. Method (1140) according to claim 26, characterized in that the step of determining (1156) the speech funda-
mental frequency estimate (f,(n)) comprises combining the compensated first set of correlation function values (?

w.d,
n)) and the second set of correlation function values (?yy,g(m,n)) in order to obtain an extended set of

g,mod (m N
correlation function values (r,, o, (k,1)),

wherein the values of the extended set of correlation functlon\values ( Vvy.erw, (K. 1)) assume corresponding values
from the compensated first set of correlation function values (r,,,, 5 moq (M,1)), the second set of correlation function
values ( yyg(m n)) or values between the compensated first set of correlation function values ( yydgmod( n)) and
the second set of correlation function values (r, ( Vy.g(M:N)) and wherein step of determining (1156) the speech funda-
mental frequency estimate (f,(n)) further comprises determining the speech fundamental frequency estimate (f,(n))
on the basis of said extended set of correlation function values ( vy.erd K1)

28. Method (1140) according to one of claims 23 to 27, characterized in that the step of determining (1156) the
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speech fundamental frequency estimate (f,,(n)) comprises determining the speech fundamental frequency est/i\mate
(fo(n)) by searching the index of a maximum value (7,(n)) from the extended set of correlation function values (;‘\yy,em
(k,m) within a predetermined number of indices (k) of the values of the extended set of correlation values (7, ¢y
(k,n)), from the first or second set of correlation function values (/r\yydyg (m, n), ?yy,g (m, n)) within a predetermi/r\led
number of indexes (m) of values of the first respectively second set of correlation function values (1, o (m, n), 1, o
(m, n)) or from the compensated first set of correlation function values (?yy,d,g,mod (m, n)) withi/p the predetermined
number of indices (m) of values of the compensated first set of correlation function values (r,, , o moq (M,n)) and
wherein the step of determining (1156) the speech fundamental frequency estimate (f,(n)) furthermore comprises
determining the speech fundamental frequency estimate (f,(n)) as the product of a sampling frequency (fs) and a

reciprocal value of said searched index (t,(n)).

29. Method (1140) according to claim 28, characterized in that the step of determining (1156) the speech funda-
mental frequency estimate (f,(n)) comprises determining a reliability factor (pfp (n) for the determined speech
fundamental frequency estimate (f,(n)) and for blocking an output of the determined speech fundamental frequency
estimate (f,(n)) inthe case the determined reliability factor (p,p (m) for the determined speech fundamental frequency
estimate (f,(n)) is below predetermined reliability factor (po).

30. Method (1140) according to claim 29, characterized in that the step of determining (1156) the speech funda-
mental frequency estimate (f,(n)) comprises determining said reliability factor (pfp(n)) by dividing the maximum value
(Tp() atsaid searchedby the first value of the extended set of correlation function values (A k,n)) or, respectively

the first, the compensated first or second set of correlation function values (?yyd,g (m,n), (m, n) (m, n)).

Ty, erw(

Ny, g,mod Tyy.g

31. Method (1140) according to one of claims 23 to 30 and claim 24, characterized in that the step of providing
values of a second power density spectrum (S(€,, ) comprises determining an estimate of the power density
spectrum of background noise (S, (€2, n)) and determining a noise suppression factor (V(ef2,n)) on the basis of
said power density spectrum of background noise (5,,,(€2,, 1)), and the step of determining (1156) the speech
fundamental frequency estimate (f,(n)) comprises multiplying the first and second power density spectrum with said
noise suppression factor (V(dff\u, n)) prior to the frequency-time-transform of the first respectively second power
density spectrum (S, (€2,.n), S,,(€,,.n)).

32. Method (1 14O)Aaccording to claim 31, characterized in that the step of providing values of a second power
density spectrum (S,,,(€2,,,n)) comprises determining the noise suppression factor as the maximum of a predeter-
mined maximum suppression coefficient/(vo) and a term being dependent on a quotient of the estimate of the power
density spectrum of background noise (S, (©2,,, n)) and the second power density spectrum (S,,(€2,,, n)).

33. Method (1 140)/\according to claim 32, characterized in that the step of providing values of a second power
density spectrum (Sp(€2,,, n)) comprises determining the estimate of the power density spectrum of background
noise (§nn(§2w n)) in speech pauses or for determining the estimate of the power density spectrum of background
noise (5,,(€2,,n)) from a segment-wise estimation of the minima of the power of a differential signal.

34. Method (1140) according to one of claims 31 to 33, characterized in that the noise suppression factor is defined
by

v (c’-'j & n) = max< V. 1 -3

AN AN
wherein S,,(€2, n) denotes the estimate of the power density spectrum of the background noise, S, (€2, ,n) denotes
the second power density spectrum, V, denotes a predefined maximum Qttenuation factor and 3 denotes a value
for overestimating the power density spectrum of the background noise (S,,(€2,,,m).

35. Method (1140) according to one of claims 24 to 34, characterized in that the step of determining (1156) the

speech fundamental frequency estimate (f,(n)) comprises reestimating the speech fundamental frequency estimate

(fo(n)) in the case the determined speech fundamental frequency estimate is below the predefined frequency value

(fi) wherein the step of determining (1156) the speech fundamental frequency estimate (f,(n)) comprises performing
. . . . . AN

the reestimation by searching a further index (k, m) of a further maximum value (r,(n)) of the extended set of
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correlation function values (r, ( vy.erdK.1), the first or second set of correlation function values ( Yya.d M ),?yy,g(m,n))
or the compensated first set of correlation function values (r, ( Yya.0.mod (M:M) within a further number of values of said
sets of correlation function values and outputing a product of a sampling frequency (f;) and a reciprocal value of
said further index (7,(n)) as the determined speech fundamental frequency estimate.

36. Method (1140) according to claim 35, characterized in that the step of determining (1156) the speech funda-
mental frequency estimate (f,(n)) comprises searching said index (k, m) of said further maximum value (Z,(n)) using
a number of values k of said sets of correlation function values which is defined by

f“’ fs
j p,Inax pr (n)

wherein k denotes the number of values of said sets of correlation function values, f,(n) denotes the previously
determined speech fundamental frequency estimate, fp,max denotes a predefined value of a maximal possible speech
fundamental frequency, f; denotes a sampling frequency and ko denotes a constant.

+ k’:o

37. Method (1140) according to one of claims 35 or 36, characterized in that the step of determining (1156) the
speech fundamental frequency estimate (f,(n)) comprises outputing said product as the predetermined speech
fundamental frequency estimate (f,(n)) only in the case that the f/L\thher index (T,(n)) is larger than 60 percent of the
previously searched maximal index (t,(n)) as well as the value (7, 4, (T, (1), 7)) of the extended set of correlation
function values (A vy.erw (K,17)) @t said further index (T,(n)) is larger than a previously defined amplitude value (Po)-

38. Method (1140) according to one of claims 24 to 37, characterized in that the step of determining the speech
fundamental frequency estimate (f,(n)) comprises modifying a speech fundamental period (%,(n)) corresponding to
said determined speech fundamental frequency estimate (f,(n)) by a interpolation correction term (A,(n)) prior of
outputing said speech fundamental frequency estimate (fp(n)), wherein said |nterpolation correction term (A,(n)) is
dependent on values of said first or second set of correlation function values ( Yyag (M0, 1, o (M, n)), of said
extended set of correlation function values (T, ( Vy.ertK.1)) OF said compensated first set of correlation function values

( ,V,Vd,g,mod(m:n)), respectively.

39. Method (1140) according to one of the preceding claims, characterized in that the method further comprises
a step of receiving the frequency domain versions (Y, Y,) of the first and second set of time domain signal values
Yy, Yo)s frequency domain filtering said frequency domain versions in order to obtain said first and second sets of
values (Y1, Y2) respectively, and providing said first and second sets of values (Y1, Y2) the first and second power
density spectrum calculator respectively.

40. Method (1140) according to claim 39, characterized in that the step of frequency domain filtering is only
performed for frequencies below a predefined limiting frequency.

41. Method (1140) according to claim 40, characterized in that the step of frequency domain filtering comprises
delaying values of said frequency domain versions being above said predefined limiting frequency.

42. Computer program product having a program code for performing the method according to one of claims 23 to
41, when the computer program runs on a computer.
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