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Abstract

A major challenge in acoustic feedback cancellation is the
strong correlation between the excitation signal and the
error signal, caused by the closed electro-acoustic loop.
Due to this correlation, the convergence rate of adaptive
algorithms, such as the NLMS, is limited. It was shown
in a recent publication that the convergence can be im-
proved to a large extent by using a reverb-based stepsize
control. This stepsize control aims at increasing the step-
size during reverberant signal periods and decreasing the
stepsize during local speech activity. Caused by reverber-
ation of the acoustic system, there is still energy in the
system immediately after local speech periods. This re-
verberation can be exploited to adapt the filter, since the
signals are not correlated here. In this paper, the reverb-
based stepsize control is further improved. Therefore, the
gain in the forward path of the closed-loop system is con-
trolled with the system distance. It is shown that in this
case, the reverb-based stepsize can be interpreted as an
approximation of the theoretically optimal stepsize. The
proposed method uses a frequency domain NLMS algo-
rithm for feedback cancellation. The target application
is an in-car communication system.

Introduction

An in-car communication (ICC) system can improve
the communication between the passengers inside a car.
Therefore, the voice of the front-seat passengers is cap-
tured by means of microphones and played back via loud-
speakers close to rear-seat passengers. This is especially
useful in the presence of high background noise levels,
e. g. while driving at high velocities.
Acoustic feedback occurs, if an audio signal, captured
by a microphone, is played back via a loudspeaker close
to the microphone. If there is no or little damping be-
tween loudspeaker and microphone, the loudspeaker sig-
nal is fed back to the microphone. This means that the
system operates in a closed electro-acoustic loop. The
feedback can cause a howling sound, if the gain of the
microphone signal exceeds a certain limit. The closed
electro-acoustic loop of an in-car communication system
is shown in Fig. 1. In the figure, the transfer function of
the forward path is Hicc(f), where f denotes the contin-
uous frequency. This transfer function also includes the
system gain. The acoustic coupling between loudspeaker
and microphone is H(f). The transfer function of the
resulting closed-loop system is

Hres(f) =
Hicc(f)

1−Hicc(f) ·H(f)
. (1)

H(f)

Hicc(f)

Figure 1: Block diagram of an ICC system, operating in a
closed electro-acoustic loop.

The system is stable, if the so-called open loop gain is
smaller than unity

|Hicc(f) ·H(f)| < 1. (2)

If high gains are required, the magnitude of Hicc(f) is
large. Thus the maximum stable gain (MSG) is given by
Eq. (2). To meet condition (2) even at high gains, meth-
ods to control the feedback are required. One approach
will be presented in this work.

Related Work

Acoustic feedback control is of interest in various research
areas. Besides ICC systems, acoustic feedback occurs
for example in hearing aids or public address systems.
A large collection of general approaches, addressing the
problem of acoustic feedback, can be found in [1]. Ex-
isting approaches can be divided into three groups. Spa-
tial filters aim at reducing the feedback by means of mi-
crophone or loudspeaker arrays. Feedback suppression
methods try to suppress howling by reducing the gain in
critical frequency bands. This can be done for example
in the frequency domain with spectral subtraction [2] or
in the time domain with adaptive notch filters [3]. The
third group is adaptive feedback cancellation. Here, the
acoustic coupling between loudspeaker and microphone
is estimated by means of an adaptive filter. The principle
is similar to adaptive echo cancellation, used for example
in hands-free systems. However, in feedback cancella-
tion, the challenge is a strong correlation between the
loudspeaker signal and the local speech, caused by the
electro-acoustic loop. As a result, the convergence rate
of the filter is slow. By applying decorrelation meth-
ods such as frequency shift or prewhitening with linear
prediction, convergence can be improved [4, 5, 6]. In a
recent publication, an adaptive feedback canceler with a
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Figure 2: Block diagram of the adaptive feedback canceler.

stepsize controlled filter update was presented. The ap-
proach is capable of improving convergence without fur-
ther decorrelation methods [7]. The stepsize is controlled
reverb-based. In this paper, the stepsize control will be
further improved.

Acoustic Feedback Cancellation

The acoustic coupling between loudspeaker and micro-
phone is described by the impulse response h(n), where
n denotes the discrete time index. For the derivation, it
is assumed here that the impulse response does not vary
over time, i. e.

h(n) = h(n+ 1) = h. (3)

In order to cancel the feedback, the impulse response h is
estimated by means of a normalized least mean squares
(NLMS) algorithm. To avoid time-consuming convolu-
tions, the NLMS is calculated in the frequency domain.
Therefore an overlap-save filterbank with FFT-length N
and frameshift L = N/2 is used, as for example described
in [8].
The structure of the algorithm is shown in Fig. 2. The
microphone signal y(n) consists of local speech s(n) and
feedback r(n). The error signal e(n) is obtained by sub-
tracting the estimated feedback from the microphone sig-
nal. In the forward path, e(n) is amplified by gain g(n)
and delayed by L samples, resulting in the loudspeaker
signal

x(n) = g(n) · e(n− L). (4)

Gain g(n) is the desired system gain. The delay is caused
by the block processing. The FFT/IFFT blocks symbol-
ize the filterbanks. The spectra of loudspeaker- and error
signal at block k = n/L are obtained by

X(k) = FFT
{
[x(n−N + 1), . . . , x(n− 1), x(n)]T

}
(5)

and

E(k) = FFT
{
[0L, e(n− L+ 1), . . . , e(n− 1), e(n)]T

}
. (6)

0L is a null vector of length L. Zero-padding is necessary
to avoid errors caused by circular convolution. X(k) is a
vector containing the frequency samples

X(k) = [X(µ0, k), X(µ1, k), . . . , X(µN−1, k)]
T , (7)

where µ = µ0, . . . µN−1 denote the discrete frequency

bins. The same applies to E(k). Ĥ(µ, k) is the esti-
mated subband impulse response of h. It contains M
filter taps at time instant k and frequency bin µ

Ĥ(µ, k) = [H0(µ, k), H1(µ, k), . . . , HM−1(µ, k)]
T . (8)

The M previous taps of the subband loudspeaker signal
are summarized in vector X(µ, k)

X(µ, k) = [X(µ, k), X(µ, k − 1), . . . , X(µ, k −M + 1)]T .
(9)

The filter update of the adaptive filter can then be writ-
ten as

Ĥ(µ, k + 1) = Ĥ(µ, k) + α(µ, k) · E(µ, k) ·X∗(µ, k)

‖X(µ, k)‖2
, (10)

where ‖·‖ denotes the Euclidean norm of a vector and
(·)∗ means complex conjugate. The gradient of the filter
update must again be constrained with zeros. Therefore
it is transformed to the time domain. After setting the
right half to zero, it is transformed back to the frequency
domain. The stepsize of the filter update is α(µ, k). The
control mechanisms explained in the following sections
are applied directly to α(µ, k).

Pseudooptimal Stepsize

The convergence characteristic of an adaptive filter can
be described by the system distance

‖H∆(µ, k)‖2 = ‖H(µ)− Ĥ(µ, k)‖2, (11)

where H(µ) s ch is the real subband impulse response.
Since the system distance becomes smaller, if the estima-
tion Ĥ(µ, k) converges towards H(µ), the optimization
criterion for the optimal stepsize αopt(µ, k) is minimizing
Eq. (11).
For convenience, the derivation of the optimal stepsize
is not explained here. It was found in [9, 10] that the
optimal convergence is achieved, if

αopt(µ, k) =
E
{
|Eu(µ, k)|2

}
E
{
|E(µ, k)|2

} . (12)

E {·} denotes the expected value. Eu(µ, k) is the undis-
turbed error signal. Undisturbed means in absence of
local speech, i. e. s(n) = 0. In this case, Eu(µ, k) can be
calculated as follows

Eu(µ, k) = X(µ, k)TH(µ)−X(µ, k)T Ĥ(µ, k)

= X(µ, k)T ·H∆(µ, k).
(13)

Inserting (13) into (12) leads to

αopt(µ, k) =
E
{
|X(µ, k)T ·H∆(µ, k)|2

}
E
{
|E(µ, k)|2

} . (14)

If the assumption is made that loudspeaker signal and
system distance are not correlated, Eq. (14) can be writ-
ten as

αopt(µ, k) ≈
E
{
|X(µ, k)|2

}
E
{
|E(µ, k)|2

} · E{‖H∆(µ, k)‖2
}
. (15)

It must be noted that in case of the closed-loop system
shown in Fig. 2, e(n) and x(n) are decorrelated only by
the delay z−L. Since the delay time is in an order where
speech is stationary, this decorrelation is not sufficient.
Thus, the assumption is violated. However, it will be
shown in the following sections that with an appropriate
gain control it is possible to control the stepsize with
Eq. (15) also in a closed-loop system.
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Figure 3: Reverb detection based on delayed blocks. a) Be-
ginning of speech activity. b) Reverberation.

Reverb-based Stepsize

The stepsize control described in [7] is based on the de-
tection of reverberant signal periods. The reason for re-
verberation is that the closed-loop system operates in an
acoustic environment. As soon as local speech stops, the
reverberation energy decays exponentially. These short
periods of time are similar to periods of remote single
talk, known from adaptive echo cancellation. Since there
is only excitation of the loudspeaker signal but no local
speech, signals are not correlated here. As a consequence,
the stepsize of the adaptive filter can be large. To detect
reverberation and increase the stepsize accordingly, two
facts of the overlap-save filterbank are exploited:

• The first half of error signal is set to zero, before it
is transformed to the frequency domain.

• The loudspeaker is delayed by a half block (or L
samples) compared to the error signal.

The principle is shown schematically in Fig. 3. The blocks
below the graph symbolize the time domain samples that
are transformed to the frequency domain according to
Eq. (5) and (6) at two different time instants a) and b).
At the beginning of speech activity, the energy in the
forward path rises abruptly. When speech activity stops,
it decays exponentially. Due to the zeros and the delay,
the expected power spectral density of the error block
follows signal changes faster and earlier than the loud-
speaker signal. This can be used as reverb detection, if
the relation

αrev(µ, k) =
E
{
|X(µ, k)|2

}
g(k)2 · E

{
|E(µ, k)|2

} (16)

is regarded. Since the error signal is multiplied by g(n)
(Eq. (4)), the power spectral density must be multiplied
by g(k)2 to ensure comparability with the loudspeaker
signal. At the beginning of speech activity the reverb
detection becomes

αrev(µ, ka)) =
E
{
|X(µ, ka))|2

}
g(ka))2 · E

{
|E(µ, ka))|2

} < 1 (17)

and during reverberation

αrev(µ, kb)) =
E
{
|X(µ, kb))|2

}
g(kb))2 · E

{
|E(µ, kb))|2

} > 1. (18)

If Eq. (16) is used to control the stepsize, the filter adap-
tion is fast during reverberation. At the beginning of
speech activity, the adaption process is slowed down.
During periods of constant speech or in absence of speech,

αrev(µ, k) is approximately 1. To avoid that the stepsize
becomes too large or negative, αrev(µ, k) is limited to
minimum and maximum values αmin and αmax.

Gain Control

By comparing Eq. (15) and Eq. (16), it follows that the
optimal stepsize and the reverb-based stepsize are iden-
tical if

1

g(k)2
= E

{
‖H∆(µ, k)‖2

}
. (19)

This means that the reverb-based stepsize becomes op-
timal, if the gain in the forward path of the system is
controlled by the inverse system distance. Since with the
reverb-based stepsize control adaption mainly happens
during reverberation, meaning when signals are not cor-
related, the assumption made in Eq. (15) is valid.
The gain g(n) is applied in the time domain while

‖H∆(µ, k)‖2 is frequency selective. After Parseval’s the-
orem, its equivalent whether the system distance is cal-
culated in the time or in the frequency domain. Thus,
the gain can be calculated as follows

g(n) =
1√

E
{
‖h∆(n)‖2

} , (20)

where

‖h∆(n)‖2 = ‖h− ĥ(n)‖2. (21)

ĥ(n) is the estimated impulse response, reconstructed

from the estimated subband impulse responses Ĥ(µ, k).

Estimation of the Unknown Parameters

To process the adaptive filter, the system distance and
the expected values must be known. The expected val-
ues can be approximated by first order IIR-smoothing of
the squared magnitude [9]. Estimating the system dis-
tance is a more challenging task. Different approaches
already exist, most of them used in the context of adap-
tive echo cancellation. However, it is beyond the scope
of this work to derive an estimator for the adaptive feed-
back canceler. Since during simulations the real system
distance is known, in the next section it is assumed that
a perfect estimator is available.

Simulation Results

A male speech signal, normalized to unity, is used for
simulations. The sampling frequency is fs = 32 kHz.
To simulate the feedback, the loudspeaker signal is con-
volved with the impulse response from rear seat loud-
speaker to driver microphone, measured in a real sedan
car. The reverberation time T60 is approx. 55 ms. To
cover the whole length of the impulse response h, the
adaptive filter Ĥ(µ, k) has M = 8 coefficients. The FFT-
length is N = 512 samples, thus the delay in the forward
path is L = 256 samples or 8 ms. To obtain the step-
size of the adaptive filter update (Eq. (10)), αrev(µ, k)
is limited to αmin = 0 and αmax = 1.2. Without feed-
back cancellation, the MSG is reached at 0 dB gain. The
gain is controlled with Eq. (20). With decreasing system
distance the gain would increase steadily. Since this is



not useful in a real application, it is limited to a max-
imum value gmax = 50 dB. However, this value is arbi-
trary, meaning that the system remains stable also at
higher gains. Fig. 4 shows gain and system distance. At

Figure 4: Gain and system distance.

the beginning, the gain rises inversely to the system dis-
tance. As soon as the desired gain is reached, it cannot
rise further. From that moment on, the system distance
fluctuates at around 5 dB below −gmax. One can observe
that the system distance always drops, immediately af-
ter local speech stops (e. g. 5 s, 10 s, 14 s, 20 s and 24 s).
These are time instants with pure reverberation. One of
these speech pauses is shown in Fig. 5 in detail. For bet-

Figure 5: Mean stepsize during speech pause.

ter presentation, the stepsize is averaged over the speech
spectrum (from 125 Hz to 8000 Hz) and smoothed. At
the end of speech activity, the stepsize is large. As a
consequence, the system distance can be reduced, since
signals are not correlated during reverberation. Once the
speaker starts talking again (24.8 s), the stepsize is small,
preventing divergence of the filter.
The possible MSGs are summarized in Tab. 1. A feedback
canceler without stepsize control is stable up to 7 dB gain.
This shows that the proposed stepsize control improves
stability to a large extend. Similar results are obtained
for different speakers and also in presence of background
noise.

Table 1: Comparison of the possible MSGs.

Without feedback cancellation 0 dB
Fixed stepsize α(µ, k) = 0.02 ≈ 7 dB

Reverb-based stepsize w/o gain control [7] ≈ 20 dB
Reverb-based stepsize with gain control � 50 dB

Conclusion and Outlook

A stepsize control for an adaptive feedback canceler was
presented. The stepsize control exploits reverberant sig-
nal periods to improve convergence. It was shown that
the reverb-based stepsize can be interpreted as optimal
stepsize, if the gain of the system is controlled with the
inverse system distance. The advantage of the stepsize
control is its stability even at high gains. The draw-
back of the method is that the system distance must be
known. However, it will be shown in a subsequent pub-
lication that a suitable method to estimate the system
distance can be developed.
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