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Abstract: While mechanical tracking is commonly seen in
robot-assisted surgery, contactless gesture control leads to a
more intuitive approach. Magnetic localization systems might
be able to provide an untethered access to the necessary hand
movement data. A model-based system exploiting a priori
knowledge to improve the accuracy and robustness can be ben-
eficial in this context. We present a proof of concept, in which
the index finger of a digital twin of a hand is tracked with
three simulated sensors. Based on the physiological composi-
tion, the finger is modeled as a kinematic chain with rotational
degrees of freedom between the segments according to the cor-
responding finger joints. We applied an extended Kalman fil-
ter using this description to enhance position and rotation es-
timates for the sensors on the finger segments. We achieved
mean absolute errors < 1 cm for the positions and < 10∘ for
the local rotations with first simulations of a bending motion.

Keywords: Extended Kalman filter, kinematic chain, pose
estimation, robot-assisted surgery

1 Introduction
Motion tracking of the hands is of high interest for control
purposes in robot-assisted surgery. While currently performed
by mechanical means, such as terminal-mounted controllers,
a contact-free approach using sensor gloves could make this
more intuitive as the hands can be moved more freely in a
contained operating space and a broader range of gestures
might be used in the control of the robot system. This could
be achieved for example using flexure sensors [1], optical sys-
tems [2] or, as explored here, magnetic sensors.

Localization of 3D magnetic sensors has already been
well established with different approaches (cf. [3–5]) and is a
possible application for novel magnetoelectric sensors which
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Figure 1: Overview of the hand sensor tracking system.

are cost-efficient and highly sensitive [6]. This contribution is
meant to enable and enhance such approaches by a model-
based system as shown in Figure 1 that incorporates a priori
knowledge about the hand and utilizes it for the tracking of a
magnetic sensor glove.

2 Methods
As depicted in Figure 2, the investigated model-based esti-
mator forms the end of a comprehensive processing pipeline
which we explore in the following.

Hand Simulation
To validate our tracking approach, the hand simulation is cur-
rently comprised of a cycle of a bending and corresponding
unbending motion, as it might be used for pointing or - when
used with multiple fingers - a gripping movement, which is of
interest for the use in robot-assisted surgery. This is achieved
by actuating the local segments with a sinusoidal s-curve, start-
ing from a resting position of 0∘ to 70∘ for the metacarpal
(MC) while the proximal phalanx (PP) of the index finger is
moved from 10∘ to 60∘ and the medial phalanx (MP) is ro-
tated from 10∘ to 105∘. An inverse of this motion is afterwards
applied which forms the course of one cycle.

This digital twin is equipped with three simulated sensors,
situated on the MC, PP and MP of the index finger, respec-
tively. We assumed the lengths of the finger segments of inter-
est based on values from [7] which are 𝑙01 = 6.8 cm for the
MC and 𝑙12 = 4.0 cm for the PP. Sensor placement on these
segments is described by vectors in local coordinate frames.
The local coordinate systems are placed at the finger joints
and rotated such that the 𝑥-axis points along the following
bone towards the tip of the finger, the 𝑧-axis is the axis around
which the flexion/extension of the joint happens and the 𝑦-axis
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Figure 2: Overview over the relevant parts of the model-based system.

is such that the resulting coordinate frame is a right-hand sys-
tem. Accordingly, this means that the abduction/adduction of a
joint capable of that motion revolves around this axis. In Fig-
ure 1, the resulting local frames for the sensors can also be
seen.
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Figure 3: Conceptual represen-
tation of a kinematic chain in 2D.

A key concept in the further
processing revolves around
the idea of treating the in-
dex finger as a kinematic
chain. With the knowledge
of the (local) orientation at
each joint and the lengths of
the digits as well as vectors
to the sensors (which can
be considered as the end-
effectors for this case), we
can reconstruct the position
of each sensor. This con-
cept is depicted in Figure 3
for a two dimensional chain,
which can be seen as the in-
dex finger when only moved
in one plane. From this, the
relation between the position of the PPs’ sensor 𝑝1 (here di-
rectly in line with the segment) can easily be found as

𝑝1 =

[︃
𝑙1𝑠 cos(𝜓0 + 𝜓1) + 𝑙01 cos(𝜙0) + 𝑥b
𝑙1𝑠 sin(𝜓0 + 𝜓1) + 𝑙01 sin(𝜓0) + 𝑦b

]︃
, (1)

with simple trigonometric relationships and the base of the
chain 𝑝b = [𝑥b 𝑦b]

T assumed known. This equation obvi-
ously gets more lengthy with each chain element, but the gen-
eral concept is independent from the number of segments.

Since descriptions of rotations in 3D space are much more
complex, the described relation (see (1)) gets more difficult.
We decided to represent the rotation in roll (𝜙), pitch (𝜃), and
yaw (𝜓) angles around the 𝑥-, 𝑦-, and 𝑧-axis respectively, as
this formulation is the most intuitive to grasp. However, as
these angles are prone to the problem of gimbal lock, we used
unit quaternions in the four dimensional set H for rotation rep-
resentation in the actual calculations regarding the kinematic
chain. Here, ⊗ denotes the quaternion multiplication, 𝑞 ∈ H

are quaternions where the subscript indicates which two coor-
dinate frames the rotation relates to each other and (·)* is the
conjugate operation. In the subscripts, g represents the global
reference frame and b the base frame located at the wrist and
rotated by a fixed and known base orientation (𝜙b = −90∘,
𝜃b = 𝜓b = 0∘) for consistency between the local segments’
coordinate frames. For the same example of the PPs’ sensor,
we use the unit quaternions 𝑞g1 and 𝑞g0 calculated from the
global orientations of sensor PP and MC respectively in the
resulting relation

[︃
0

𝑝1

]︃
= 𝑞g1⊗

[︃
0

𝑙1s

]︃
⊗𝑞*g1+𝑞g0⊗

⎡⎢⎢⎢⎣
0

𝑙01

0

0

⎤⎥⎥⎥⎦⊗𝑞*g0+

[︃
0

𝑝b

]︃
(2)

with

𝑞g1 = 𝑞gb ⊗ 𝑞b0 ⊗ 𝑞01, 𝑞g0 = 𝑞gb ⊗ 𝑞b0. (3)

Localization
To simulate a possible localization algorithm based on actua-
tor coils exciting a known magnetic field that is prone to errors
and has a longer time between pose results, the ground truth
signals are subsampled. The time between samples is cho-
sen as 96ms in accordance to the frequency of new localiza-
tion results in the actual signal processing chain presented in
[3, 4]. Furthermore, the same experimental constraints (track-
ing space of 50 cm × 50 cm × 20 cm) are assumed. To model
localization errors, these signals were then superimposed with
additive white Gaussian noise with standard deviations of 2 cm
for the positions and 10∘ for the orientation respectively.

Preprocessing
During preprocessing, the measured orientations in global co-
ordinates are first mapped to their corresponding orientations
in the segment based coordinate frames. This is achieved by
calculating the orientation quaternions for each incoming set
of roll-pitch-yaw angles, multiplying it from the left with the
preceding, conjugated orientation quaternion and reforming
the roll-pitch-yaw representation from the result. Furthermore,
to enable the use of a quasi-continuous discrete system model,
we linearly interpolate the incoming signals to achieve a typ-
ical working samplerate of 1 kHz for the subsequent Kalman
filter.
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Extended Kalman Filter
Forming the core of the present work is an extended Kalman
filter (EKF), which models the inertia in the tracked move-
ment and, more importantly, fuses the redundant information
of the localized positions and orientations in a beneficial way
while incorporating the a priori knowledge about the kine-
matic chain-like nature of the index finger and the physiolog-
ical limitations of its joints. The latter is done by restricting
the degrees of freedom of each joint. Since the metacarpopha-
langeal joint can only perform flexion/extension and abduc-
tion/adduction movements, only the local pitch and yaw are
taken into account. Using the same reasoning, we only model
the yaw angle in the rotation from the proximal to the medial
placed sensor. Hence, we formulate the state vector 𝑥 ∈ R15

as

𝑥(𝑛) =
[︁
𝛼T(𝑛) 𝛼̇T(𝑛) 𝑝T

b(𝑛)
]︁T
, (4)

𝛼(𝑛) =
[︁
𝜙0(𝑛) 𝜃0(𝑛) 𝜓0(𝑛) 𝜃1(𝑛) 𝜓1(𝑛) 𝜓2(𝑛)

]︁T
(5)

with the vector 𝛼 containing the angles under consideration
and the time index 𝑛. We describe the system’s state propaga-
tion linearly using the system matrix 𝐴 and an input matrix 𝐵

coupling in the base’s position

𝐴 =

⎡⎢⎣ 𝐼6 𝐼6 · 𝑇s 03×3

06×6 𝐼6 03×3

03×15

⎤⎥⎦ , 𝐵 =
[︁
03×12 𝐼3

]︁T
, (6)

as well as a matrix 𝐺 coupling in noise components 𝑤 ∈ R6

proportional to angular acceleration

𝐺 =
[︁
𝐼6 · 𝑇s

2

2 𝐼6 · 𝑇s 06×3

]︁T
(7)

where identity matrices and zero matrices with dimensions
given in the subscript are denoted by 𝐼 (always square) and 0

respectively. A timestep between samples (in the present con-
figuration 1ms) is denoted by 𝑇s. The resulting system equa-
tion is 𝑥(𝑛+ 1) = 𝐴𝑥(𝑛) +𝐵𝑝b(𝑛) +𝐺𝑤(𝑛).

Incorporation of the kinematic chain happens in the output
formulation. We define the output vector 𝑧 ∈ R15 as

𝑧(𝑛) =
[︁
𝛼T(𝑛) 𝑝T

0(𝑛) 𝑝T
1(𝑛) 𝑝T

2(𝑛)
]︁T
, (8)

leading to 𝑧(𝑛) = ℎ(𝑥(𝑛)) + 𝑣(𝑛), with a nonlinear output
function ℎ describing its connection with the system state and
𝑣 ∈ R15 modeling the measurement noise. Here, the angles
are taken from the state and the positions are calculated ac-
cording to the kinematic chain propagation explained above.
As the conventional Kalman filter assumes fully linear sys-
tems, we employ the EKF approach through linearization of
the output function ℎ(𝑥(𝑛)) by computing its Jacobian matrix
𝐻(𝑛) = 𝜕ℎ

𝜕𝑥 (𝑛) where it is necessary for the Kalman update
equations.

Using the introduced notions, we formulate the prediction
step of our filter with the error covariance matrix 𝑃 and the
process noise covariance 𝑄 = 𝐺𝐺T𝜎2𝛼 as

𝑥̂p(𝑛+ 1) = 𝐴𝑥̂(𝑛) +𝐵𝑝b(𝑛), (9a)

𝑃 p(𝑛+ 1) = 𝐴𝑃 (𝑛)𝐴T +𝑄, (9b)

where the estimation is denoted by (̂·) and a subscript p signi-
fies the predictive variables. Taking the predicted state 𝑥̂p we
then nonlinearly calculate the estimated output 𝑧̂ that we are
interested in. As a further inclusion of a priori knowledge, we
limit the angles between the MC and PP as well as between the
PP and MP by intervals around a typical physiological range of
motion (𝜃1 ∈ [−30∘, 30∘], 𝜓1 ∈ [−10∘, 100∘], 𝜓2 ∈ [0∘, 110∘]).
Hence we can guarantee a physically possible and consistent
set of output poses once again mappable to an index finger.

Lastly, we use the preprocessed pose information 𝑧 from
the localization to correct our estimates by means of the
Kalman gain matrix 𝐾 which depends on the measurement
covariance matrix 𝑅 where the first three diagonal entries are
𝜎2m,0, the fourth and fifth diagonal entry are 𝜎2m,1, the sixth
diagonal entry is 𝜎2m,2 and the nine remaining diagonal values
are 𝜎2m,𝑝. The required equations are given by

𝐾(𝑛) = 𝑃 p(𝑛)𝐻
T(𝑛)

(︁
𝐻(𝑛)𝑃 p(𝑛)𝐻

T(𝑛) +𝑅
)︁−1

, (10a)

𝑥̂(𝑛) = 𝑥̂p(𝑛) +𝐾(𝑛) (𝑧(𝑛)− 𝑧̂(𝑛)) , (10b)

𝑀(𝑛) = (𝐼15 −𝐾(𝑛)𝐻(𝑛)) , (10c)

𝑃 (𝑛) = 𝑀(𝑛)𝑃 p(𝑛)𝑀
T(𝑛) +𝐾(𝑛)𝑅𝐾T(𝑛), (10d)

which complete the description of the model-based filter.

3 Results
For this proof of concept work, the variance matrices were ini-
tialized with the examplary chosen, working values 𝜎2𝛼 = 60,
𝜎2m,0 = 120, 𝜎2m,1 = 𝜎2m,2 = 400 and 𝜎2m,𝑝 = 5. The system
is real-time capable with a small computational load of around
5% on a Ryzen 5 3600. In Figure 4, a full bending/unbending
cycle taken from the resulting signals is shown for the exam-
plary proximal sensor with the estimation results depicted in a
darker color in relation to the respective reference. Instead of
the first simulated cycle, during which a transient behaviour of
the initial zero-state is present, an initially steady-state cycle
is depicted. Figure 4A displays the pose estimations in rela-
tion to the simulated ground truth signals. The orientation is
given in the local reference frame, which is why only the rele-
vant pitch and yaw signals are plotted. The unwrapped global
pose estimates are shown in reference to the stepped naive
localization result (measurement for the EKF) in Figure 4B.
Lastly, Figure 4C is an error plot of the 𝑥-position estimate
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Tab. 1: Mean absolute errors of the shown cycle.

MAE [𝑥 𝑦 𝑧] (cm) MAE [𝜙 𝜃 𝜓] (∘)
EKF LP EKF LP

MC [0.1 0.1 0.3] [1.3 1.2 1.2] [6.4 3.5 6.6] [12.3 6.0 10.2]
PP [0.4 0.4 0.6] [1.3 1.2 1.3] [— 2.9 4.8] [— 6.9 7.9]
MP [0.7 0.8 0.7] [1.0 1.3 1.4] [— — 10.3] [— — 8.6]

in relation to the ground truth. As an evaluation reference, the
preprocessed signals were filtered with a simple lowpass fil-
ter (LP) using the scientific computing python library SciPy
(Butterworth, 2nd order, 5Hz). The resulting mean absolute er-
ror (MAE) for the estimated 𝑥-position is 0.6 cm compared to
1.3 cm for the naively filtered signal, which also exhibits more
erratic behaviour. The other MAEs can be seen in Table 1.

4 Conclusions
In this paper, we introduced an approach of using an extended
Kalman filter to include knowledge about the kinematic chain
formed by a finger into a model-based magnetic tracking sys-
tem. We simulated a hand performing a bending motion and
considered resulting estimated pose signals as well as mean
absolute error values. The system currently assumes a fixed
working space for the localization, knowledge of the base po-
sition and three rotational degrees-of-freedom known by the
first sensor, which makes at least a 2D sensor necessary at that
point. A separate pose tracking of the base could enable the
use of a 1D sensor at this point as well. While the local ori-
entations of segments further along the chain suffer from po-
tential error accumulation from the relative orientation compu-
tation during preprocessing, the results are promising overall.
This motivates further research with several directions. One is
the investigation of different simulated noise types and a com-
parison of the simulation with localization errors from future
recordings. The usage of the filter for multiple fingers where
the base position could be estimated from a combination of a
higher number of sensors would be of high interest. We also
assume further modeling of inter-finger relations and adapta-
tion of the covariance matrices at runtime to be beneficial.
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(A) Local pose estimate (dark) vs. ground truth (light).

0

200

A
n

gl
e

(°
)

0 2 4 6 8 10 12 14

Time (s)

0.1

0.2

P
os

it
io

n
(m

)

(B) Global pose estimate (dark) vs. unprocessed localization (light).
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Figure 4: Results for the sensor at the PP with simulated bending
and unbending of the index finger. Colors are red, yellow, and blue
for 𝑥-/𝜙-, 𝑦-/𝜃-, and 𝑧-/𝜓-signals, respectively.
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