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Abstract

In this work, we implement speech signal enhancements in
the context of underwater telephony. The system mostly
addresses issues of the “dry end”, covering acoustic echoes,
local stationary noise, and gain fluctuations. It consists of a
linear acoustic echo canceller with a sophisticated timevariant
and nonlinear control strategy, a postfilter for suppressing
noise and residual echoes, and both automatic and noise-
dependent gain control algorithms. The system relies on
estimations of noise spectra, coupling factors, and delays as
well as voice activity detections for different signals. The
acoustic echo canceller includes a detector for room changes
for quick adaptation and recovery from errors. It was tested
successfully with both regular and underwater transmission
channels, in conversational and simulated setups, and shown
to significantly improve the speech quality in conversations.

Introduction

Underwater telephony is a key element for operations
involving submarines, divers and other underwater entities.
While the technology is constantly being evolved to increase
the quality of this very limited transmission channel, the
situation at each end is often not as advanced as for regular
telephony setups. In this work, the operation of a hands-free
terminal on both sides of such a underwater telephony system,
as illustrated in Figure 1, is achieved by implementing key
signal enhancements to mostly eliminate acoustic echoes and
other distractions from the speech signals.

Acoustic
dry-end
Acoustic
wet-end

Figure 1: Illustration of the context of this work, illustrating
the three types of acoustic echoes present. Here we deal with
acoustic dry-end echoes (A).

Notation

We denote time-domain signals with lowercase and
frequency-domain quantities with uppercase letters. The
variable n indexes samples, k processing frames, y frequency
subbands and m partitions of a frequency response which
spans multiple frames.
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Figure 2: Algorithmic structure overview for the whole
system with Filterbanks, Acoustic Echo Cancellation,
Postfilter, Automatic Gain Control, Limiter and Noise
Dependent Gain Control.

Algorithmic structure

The purpose of the developed sytem is to enhance on one hand
the local microphone signal y(n) before transmitting it
underwater, and on the other hand the received far-end signal
x(n) before playing back locally. As depicted in Figure 2, the
system is thus split into Imput Enhancement and Output
Enhancement modules. The first module performs Acoustic
Echo Cancellation and Postfiltering in the frequency domain
and additionally Automatic Gain Control and limiting. The
second block also features the last two steps, with an
additional Noise Dependent Gain Control unit.

For the echo cancellation, the signal x(n) exciting the echo
needs to be known as well, and both are transformed into their
frequency-domain representations X (i, k),Y(u, k) via
overlap-add Filterbanks. A synthesis Filterbank is then used
on the enhanced signal before feeding it into the AGC, and an
estimate of the local noise level is in turn forwarded to output
enhancement.

Acoustic Echo Cancellation (AEC)

Acoustic echoes are by far the most irritating disturbance in
hands-free terminals. A well established way of reducing
them is also chosen here and relies on modeling the disturbed
signal Y as result of an Loudspeaker-Enclosure-Microphone
system (see Figure 3) as

Y=X*H+N,
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Figure 3: Loudspeaker-Enclosure-Microphone system.



where H denotes the frequency response between speaker and
microphone, N the Jocal signals and point-wise
multiplication. To obtain an estimate of the undisturbed local
signals, the frequency response is estimated as H,,(u, k) via
an adaptive filter and the estimated echo

DGuk) = ) X =m) * (a0

*

is subtracted from the microphone signal to yield our first
enhancement, also called the error signal

Echo estimation

For the adaptive filter, the Normalized Least Mean Square
(NLMS) algorithm is chosen due to its robustness and modest
complexity. In each processing frame k, it produces an update
AH to be added to H, which can be given as

E*([l, k)X(”' k — m)
TSX (k= D)2

with the complex conjugated error signal E* [1]. The factor
Ur (1, k) 1s called the stepsize parameter and is determined by

control mechanisms which are crucial for using the NLMS for
Acoustic Echo Cancellation.

AHm(”' k) = Ilp(ll' k) :

Stepsize calculation

The quickest adaptation of the NLMS filter is achieved by a
stepsize of ur = 1, in which case the estimated echo D would
always try to converge to the full microphone signal Y. This
is however not always the best choice for our purposes, as it
would try to adapt to local speech signals as well. Thus the
stepsize needs also to be adapted, to which end we follow a
formulation of the optimal stepsize for LEM systems with
local signals [2, p 80] as

_ElE® D]
ENIE (0P

where E,, stands for the undisturbed error, defined as the
distance between estimated and true echo

As the optimal stepsize term only requires the power spectral
density (PSD) of E,, we can approximate it as £, based on
coupling factors with known quantities and an additional
voice activity detection term V., leading to the following
stepsize term:

.uopt (Il, k)

E2(u k)
2

te( k) = Ve(u k) - =
E (u k)

limited to [0,1]

Undisturbed error

In this work we estimate the undisturbed error PSD through
—2

its estimated coupling to both the smoothed far-end signal X

and the smoothed estimated echo D2, expressed as time and
frequency selective quantities Sy.(it, k) and Ba(, k)
respectively (see also figure 4). This leads to the following
approximation:

5 —2 - =2
EI%(I‘LI k) = max [X (I’le - kdly)ﬁxe(ﬂ' k) ID (I’l'l k)ﬁde
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Figure 4: Estimation of the undisturbed error with coupling
factors.

Here, the far-end signal is also delayed by Edly frames to
account for the initial delay between excitement and
microphone signals, stemming from technical latencies and
the shortest acoustic path in the LEM system. This delay can
be estimated by a fairly simple procedure from the estimated
frequency response and avoids certain unstable behaviour
especially during transitions of silence and speech.

Voice activity detection

Both coupling factors are updated only during remote single-
talk, when the undisturbed error can be assumed to be equal
to the error signal E. This can be performed per-subband,
allowing the algorithm to adapt to frequency ranges
containing only echoes at the same time as local speech is
present in others.

Remote voice activity — or more specifically any far-end
activity beyond background noise — can be detected as

7(.ul k) > Bx(ﬂi k) : SNRVx

with a threshold SNR,, and a remote background noise
estimate B, (u. k), which in turn is obtained for this and other

purposes by multiplicative constants based methods as
described in [3].

Local voice activity is not as clearly detectable, as it is only
known as a mix with acoustic echoes and noise. The
estimation used here uses the error signal E and a local noise
estimate Be|y(u, k) to obtain

E(ﬂ, k) > Be]y(u' k) . SNRVE

with a higher signal to background noise ratio, to account for
residual echoes in E.

Coupling factors

Bxe(it, k) and Bg.(u, k) are updated by fixed increase or
decrease factors in each frame, depending on whether the
corresponding estimate is larger or smaller than E which we
assume to momentarily resemble the true undisturbed error. A
much smaller increase factor can in this case be beneficial to
underestimate the coupling factors and thus keep the stepsize
more stable during residual echoes.

Rescue mechanisms

The presented coupling factor estimation method relies on
system distance estimations, which are at risk of getting stuck
in long-lasting misadjustments [2, p 333]. For the mitigation
of this problem, an Enclosure Dislocation Detection method
is added, which can enforce a strong re-adaptation of the
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coupling factors and help the echo estimation in keeping up
with sudden changes of the LEM system.

As illustrated in figure 5, this is realized by a second instance
of the NLMS filter, which is run in parallel but with a very
simple and much more aggressive control strategy, which sets
the stepsize to pp = 1 whenever remote voice activity is
detected in a given subband. The filter operates only on a
small subset of frequency bands to reduce the complexity and
would be too divergent to be used for echo estimation. This
divergence however allows it to recover from room changes
quickly, and when the shadow filter error Ej;, is consistently
smaller than the regular error E for some amount of time, the
coupling factors can be reset, leading to a strong readaptation
of the main filter. The opposite case of E(u, k) < Eg,(u, k)
happens very frequently as the main filter is designed to adapt
more robustly, and leads to a reset of the shadow filter
coefficients to the correponding values of the main filter.
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Figure 5: Schematic depiction of the Enclosure Dislocation
Detection module. The coupling factor reset is illustrated by
the bold arrow.

Apart from Enclosure Dislocation Detection, more direct
constraints are imposed by strongly attenuating individual
bands of the frequency response H,,(u, k) if either the error
signal surpasses the microphone signal in subband p, which
should theoretically never be the case as echo subtraction is
not meant to add something to the signal, of if the energy of a
subband p throughout all partitions m reaches a threshold
itself.

Postfilter

As stated in [2, p 246], an AEC can only subtract the part of
the echoes modeled by the frequency response H(u, k),
whose length is limited as it impacts the convergence speed
of the NLMS. This leaves residual echo components in place,
which still can be fairly disturbing. Using an estimated PSD
of those components, we can suppress them further, now
introducing slight degradations of the speech quality, with a
recursive Wiener Filter. This filter can also additionally deal
with stationary background noise, whose PSD can also be
estimated and is already used in the previous processing steps.

Residual echo estimation

The true residual echo D, is per definition equal to the
undisturbed error E,,, thus we can use the coupling factor
based estimation as starting point. Compared to £, which is
rather underestimated to avoid unstable behaviour of the
filter, we add more signal components to D, to reduce the
chance of the Wiener Filter “missing” disturbances in the
signal:
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The estimated echo is also used without smoothing as

ﬁres(ﬂl k) = |D(H, k)| : ﬁde(ﬂ- k)

to catch onsets of residual echoes faster. A exponential falloff
of D, is used as lower bound to capture echo tails through

Dres(#' k) = Dres(”'k . 1) * Vres-

A smoothing along the frequency axis is added to avoid close-
to-zero outliers in D, which are problematic as they
introduce a large bias [2, p 360]. And finally, the resulting
residual echo estimate is overestimated during remote single-
talk or speech pauses to strike a balance between reducing
disturbances and impairing the resulting signal’s quality.
Wiener Filter

The Wiener Filter acts as an attenuation on the signal, giving

where G,, incorporates noise B and echo D, estimations as
Gw(”l k) = maX[G\:v(u' k) 4 Gmin(ul k)],

BroiseBE (1, k) + Dies (i, k)
max [G(”' k — 1)' Gmin,r] |E(ﬂ' k)lZ

This term also includes the spectral floor G, (1, k) which
can be adapted based on voice activity, the fixed
overestimation of the noise estimate 3,45 and the recursive
term.

Gy, k) =1—

Gain control

Apart from added disturbances, the volume of the signal can
also be outside the optimal range, leading to either distortions
or a low signal to noise ratio.

To compensate for this, first an Automatic Gain Control
(AGC) unit is employed in both input and output
enhancements, which operates in the time-domain, estimates
the signal peak and boosts or attenuates the signal to reach a
desired peak. A gain change is only made during voice
activity, which in this case is detected whenever a fast
envelope tracker surpasses a slow one by a threshold. By
allowing for a faster decrease of the gain we allow the
algorithm to quickly react to volume increases while skipping
over speech pauses instead of falsely interpreting the noise as
speech.

While the AGC reacts very quickly, a Limiter is added to
catch any remaining peaks and serve as a definitive constraint
on the signal amplitude.

During output enhancement, a Noise Dependent Gain Control
(NDGC) unit is also used, which receives the estimated local
background noise and maps its power to a certain amount of
additional gain, to allow the listening level to exceed the noise
enough to be well audible while not being unreasonably loud
during its absence.

Evaluation

The presented algorithms were developed in C/C++ within the
KiRaT framework developed at the chair of Digital Signal
Processing and System Theory at CAU Kiel. They were tested
subjectively in an office environment and outdoors with a



short underwater path, with both conversations and recorded
signals.

Instead of a study with human listeners, we used a neural
network model developed by Purin et al. [4] to predict mean
opinion score (MOS) values for echo and other impairments
as defined by ITU-T P.831 and P.832 recommendations.
Their model has a pearson correlation coefficient to true
human ratings of up to 0.847, far outperforming conventional
metrics like ERLE (echo return loss enhancement).

A similar approach was used to also judge the performance of
the noise suppression in specific, with a neural network model
called DNSMOS by Reddy et al. [5], which computes scores
for the signal before and after enhancement, and allows their
difference to be used as a metric with a PCC of up to 0.98 with
human ratings.
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Figure 6: Both neural-network metrics illustrated by the
signals they use.

Results

Subjectively the system performed very well, allowing
unimpaired conversations in various environments and noise
levels. The results from AECMOS were obtained on a set of
self-recorded clips and compared with the distribution of
results from the participants of the 2022 ICASSP Acoustic
Echo Cancellation Challenge [6] and are shown in figure 7.
Even though our approach is rather conventional, its results
lie well within the competitors, except for near-end single
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Figure 7: AECMOS results for this work, compared to
distribution of results from [6].
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talk, in which case the lack of more sophisticated noise
suppression comes to play.

The DNSMOS results are shown in figure 8 and also show a
clear improvement in all categories, while not reaching the
best scores due to, again, a lack of more advanced nosie
suppression.
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Figure 8: DNSMOS results for this work, the improvement
of average values shown with the arrows.

Conclusion

A system for enhancing the dry-end situation of an underwater
telephony setup with hands-free terminals was developed and
evaluated. It runs in real-time and was shown to perform well
in various scenarios, allowing distraction-less conversations
with consistent listening levels and without disturbing
acoustic echoes or stationary noise components. The good
results were also confirmed with more objective metrics.
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