
Deep Reinforcement Learning for Autonomous SONAR Port Monitoring

Christian Kanarski1,2, Bastian Kaulen1, Frederik Kühne1, Tim Owe Wisch1,
Karoline Gussow1, Sören Christensen3, Gerhard Schmidt1

1Digital Signal Processing and System Theory, Kiel University, Kiel, Germany
2DeepSea Monitoring Working Group, GEOMAR Helmholtz Center for Ocean Research Kiel, Kiel, Germany

3Stochastics Research Group, Kiel University, Kiel, Germany

Email: {chk, bk, frk, timw, kars, gus}@tf.uni-kiel.de1, christensen@math.uni-kiel.de3

Abstract
The use of MIMO-SONAR systems to autonomously
monitor a port environment requires a robust control of
the system parametrization and its adaptation to chang-
ing environmental conditions in real-time. Deep rein-
forcement learning (DRL) can be used to implement a
control-assisting artificial intelligence (AI) which adapts
the system parametrization in relation to the observed
environment scans. Through the design of a reward func-
tion, the controlling agent can learn the fulfillment of
given sub-goals, such as the evaluation of security risks
and the management of limited computational and en-
ergy resources. During training, the agent explores the
unknown environmental dynamics in a trial-and-error
fashion and improves its policy by exploiting the gath-
ered experiences of agent-environment interactions. By
retrospective analysis of the chosen system parametriza-
tion and the resulting scan observations, the agent learns
to adapt its monitoring strategy to fulfill the main goal of
reliably detecting unwanted intruders inside of the port.
This work presents the design of the reward function, the
training architecture, and the performance evaluation of
the trained deep reinforcement learning agent for a sim-
ulated port environment.

Introduction
Port environments with open entrances carry the risk of
unwanted intruders entering to cause damage to ships or
port infrastructure. A SONAR system can be stationed
inside of the port to hydroacoustically monitor the area
for possible attackers. Reliable and fast attacker detec-
tion is required for timely interception by a coastal guard.
This requires real-time adaptation to dynamic environ-
mental conditions with robust control of the SONAR
system parametrization to optimally scan the regions of
interest. When using mobile systems with limited en-
ergy and computational resources, tactical management
of these limited resources is required for long-term au-
tonomous monitoring. Such an autonomous control task
can be achieved by an artificial intelligence (AI) agent
that sets the parametrization of the next scan in relation
to the currently observed environment as in Fig. 1. A
port security scenario is considered here where the scan
modes of a MIMO-SONAR system are controlled by a
reinforcement learning (RL) agent. A virtual port envi-
ronment written in the Python programming language
is used to train the agent with the TensorFlow Agents
(TF-agents) [2] library. This work extends the results
presented in [1].

Multi-input
sequencing

Environment

Multi-output
processing

Action :
Parametrization

RL agent

MIMO-SONAR system

Environment
state

Processed state

Reward signal

SONAR scan

Environment
interaction

Figure 1: MIMO-SONAR parametrization control by a
RL agent reacting to the observed environment.

Environment
The scenario presented is divided into unique episodes
with the environmental conditions being redefined at the
start of each episode. This allows the agent to learn
a generally viable scanning strategy by seeing multiple
different scenarios. The attacker appears with a delay
uniformly sampled in the range of 2 s to 6 s. With a 50%
chance, the attacker follows the strategy of moving di-
rectly towards the target ship as in Fig. 2a to reach it
as fast as possible. Otherwise, the attacker first moves
along the port walls as in Fig. 2b to be masked by the
strong wall reflections visible in Fig. 3. For moving in-
side the water, the attacker uses an aqua scooter with a
50% chance resulting in a moving speed being uniformly
sampled in the range of 2m

s to 5.5m
s . Otherwise, the at-

tacker dives with a uniformly sampled speed in the range
of 0.5m

s to 1.5m
s .

(a) Direct path trajectory. (b) Moving along wall first.

Figure 2: Attack strategies of the port intruder.

For each discrete time step n of the episode, the agent
interacts with the environment by choosing an action An

from the following options: Setting the scan parametriza-
tion and starting a near, intermediate or far field scan as

+90°

+60°

+30°
0°

-30°

-60°

-90°
r [m]0 200 400 600 800 1000

Sonar observation

Port area

+90°

+60°

+30°
0°

-30°

-60°

-90°
r [m]0 200 400 600 800 1000

Scan history

Port area

+90°

+60°

+30°
0°

-30°

-60°

-90°
r [m]0 200 400 600 800 1000

Location

Ship
Port area
Route of the diver
Diver0.0 0.2 0.4 0.6 0.8 1.0

Intensity level
0.0 0.2 0.4 0.6 0.8 1.0

Time passed

Figure 3: SONAR scan observations for the port training environment.

described in [1] to observe the port environment in the
range of

range(An) ∈

[0m, 375m], Near field,

[48m, 700m], Intermediate field,

[675m, 1000m], Far field,

(1)
or performing no scan to save energy. According to the
chosen action, a SONAR scan observation as in Fig. 3
is generated to represent the observed environment state
with a resolution of 30 beams and 100 cells per beam.
The intensity of cells inside the port is set to Gaussian
distributed environment noise. The active SONAR equa-
tion [3]

SE︸︷︷︸
Signal excess

= SL︸︷︷︸
Source level

+ DI︸︷︷︸
Directivity index

−2 TL︸︷︷︸
Transmission loss

+ TS︸︷︷︸
Target strength

− NL︸︷︷︸
Noise level

− DT,︸︷︷︸
Detection threshold

(2)
is then used to calculate the intensity of the cells con-
taining the attacker and the ship. To model the strong
reflections at the port walls, the wall gain factor

wwall = Gwall − 20 log10 (rwall) , (3)

with a quadratic intensity propagation loss term is added
to the cells containing walls. Cells outside of the port
area are masked with a value of −1 whereas cells inside
the port are normalized to the maximum occurring in-
tensity resulting in an intensity range of [0, 1]. The sec-
ond generated observation is the scan history, storing the
time elapsed since a cell was last scanned. This time is
normalized and capped to a maximum of 23.5 s, the time
needed to pass 12.5% of the port diagonal with an aqua
scooter at maximum speed. This additional observation
allows the agent to take its recent scanning behavior into
account when evaluating the priorities of the port areas
to scan. A detection is registered if the attacker’s cell po-
sition matches the non-stationary maximum in the scan
for 5 consecutive time steps. Stationary targets such as
the walls and the ship are excluded from the detection
by subtracting a recursively smoothed version of the last
few scan observations before the maximum calculation.
The attacker can therefore only be detected by appearing

in a cell previously occupied by environment noise and
if the corresponding area is scanned. An episode ends
when the attacker reaches the ship or when a detection
is registered. In the case of a detection, a successful in-
terception by the coastal guard is assumed if it can reach
the safety zone of 20m around the ship’s center before
the attacker reaches that area.

Deep Reinforcement Learning
Deep reinforcement learning (DRL) is a deep learning
method where a problem-facing agent, represented by a
neural network, learns to achieve a desired goal by ex-
ploring an environment and learning from the interac-
tions with it [4]. The goal is encoded by the reward
function Rn, rewarding behavior which leads to the goal
being achieved and punishing disadvantageous behavior.
As in Fig. 1, the agent interacts with the environment by
choosing an action An based on the currently observed
environment state Sn and the environment returns the
new environment state observation Sn+1 and a reward
Rn+1 to the agent. The reward depends on how useful
the state transition to Sn+1 was with regard to reach-
ing the goal from its successor states. These experience
tuples

en = ⟨Sn, An, Rn+1, Sn+1⟩ , (4)

are stored in an experience replay memory for later train-
ing. In this work, the categorical deep Q network (C51)
[5] is used to train a convolutional neural network (CNN)
representing the RL agent. It is a distributional extension
of the deep Q network (DQN) [6], where the underlying
value probability distribution of the Q function

Qπ(s, a) = Eπ

[
NT∑
k=0

γkRn+k+1 | Sn = s,An = a

]
, (5)

is learned. This Q function represents the expected value
of taking the action a in the state s by accumulating
the rewards Rn+k+1 discounted by the factor γk in the
subsequent states. The agent’s optimal policy

π∗(s) = argmax
a

[
Q(s, a)

]
, (6)

aims to maximize the expected reward function by choos-
ing actions that maximize the Q function, and therefore,
the expected return.

Reward Design
The reward function

rsum(n) = rcost(An) + rhistory(n) + rtime(n)

+ rdetect(n) + rfailure(n),
(7)

was designed to encourage the agent to learn a SONAR
parametrization control strategy that leads to a reliable,
fast, and energy efficient detection of the attacker. The
energy cost term

rcost (An)

=

{
−P ·NTx

· tsig (An) , An =̂ Scan,

+ 1
2 ·min [P ·NTx · tsig (An)] , An =̂ Standby,

(8)

represents the physical cost of performing a scan with
transmit power P for NTx

transmitting projectors and
the signal duration tsig (An). It is negative for perform-
ing a SONAR scan, positive for the standby action to
reward energy saving when appropriate and it is nor-
malized to the maximum scan cost before scaling fac-
tors are applied. The history term rhistory(n) rewards
the agent for how up-to-date the scan history is, being
positive if more than half of the port area was recently
scanned and negative otherwise. The negative time cost
rtime(n) increases for each time step passed in an episode
to encourage a fast detection. The detection reward term
rdetect(n) rewards the agent for every consecutive scan of
the attacker’s area if the attacker is detected in this scan.
This reward increases if the detection was fast enough for
the coastal guard to intercept the attacker. The failure
penalty term rfailure(n) is the maximum negative reward
if the attacker reaches the ship before an interception,
even in the case of a preceding detection. This nega-
tive term tells the agent to avoid the ship attack from
happening by all means.

All of these terms can be multiplied with a scaling fac-
tor to increase or lessen their relevance for the control
strategy of the agent. For example, when a stationary
SONAR system with an active power supply is used,
the relevance of the energy cost rcost(An) term can be
decreased. Therefore, the agent can utilize more en-
ergy consuming scans to minimize the detection time and
maximize the detection rate.

Training
The architecture of the CNN used to represent the agent
is given in Tab. 1 with two convolutional and two fully
connected (F.c.) layers, all followed by a rectified linear
unit (ReLU) activation function. The outputs of the last
layer are the discrete probability distributions of the Q
functions from Eq. (5) for each action. As is common for
C51 [5], 51 bins were used to model each distribution.
The C51 implementation of the TF-agents library was
used to train the CNN. Four agents were trained with the
same network architecture and hyperparameters used but
with different number of training iterations. The number
of training episodes chosen were 102, 103, 104 and 5 · 104
with 10 training iterations per episode and an experience
memory length of 105. The evaluation metric collected
during training was the average collected episode reward

Table 1: CNN architecture used to represent the agent.

Layer Kernels Size Stride Neurons
Conv. 32 8× 8 4 /
Conv. 32 4× 4 4 /
F. c. / / / 512
F. c. / / / 51 ·Na

over the last 10 episodes as seen in Fig. 4. For the longest
trained agent with Nit = 5 · 105 training iterations in
Fig. 4d, the training took approximately 8 hours on a
PC with an AMD Ryzen 5 3600 CPU, a Quadro RTX
4000 GPU and 16 GB of RAM.

0 200 400 600 800 1 000
nit

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

R̄
(n

it
)

(a) Nit = 103.

0 2 000 4 000 6 000 8 000 10 000
nit

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

R̄
(n

it
)

(b) Nit = 104.

0 2 · 104 4 · 104 6 · 104 8 · 104 10 · 104

nit

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

R̄
(n

it
)

Unfiltered

Median

(c) Nit = 105.

0 1 · 105 2 · 105 3 · 105 4 · 105 5 · 105

nit

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

R̄
(n

it
)

Unfiltered

Median

(d) Nit = 5 · 105.

Figure 4: Agent’s average collected reward for varying train-
ing iterations Nit.

Evaluation
As seen in Fig. 4, the maximum reward earned on aver-
age increases with rising amounts of training iterations.
While the least trained agent in Fig. 4a reached a max-
imum reward of about 0.5, the longest trained agent in
Fig. 4d managed to achieve a maximum average reward
of approximately 1.5. As the reward is an indicator of
how well the agent manages to achieve the given goals,
longer training seems to lead to a better control strat-
egy. To see the differences in the control-strategies of
the agents, each agent was placed in the training en-
vironment for 1000 evaluation episodes. Averaged over
all evaluation episodes, the chosen actions in Fig. 5, the
episode steps taken and reward earned in Tab. 2 and the
terminal states in Fig. 6 were recorded. The considered
terminal states are the successful interception of the at-
tacker by the coastal guard, a detection occurring but too
late for a successful interception or a failed interception
as described before.

The agent trained for Nit = 103 iterations learned to ex-
clusively use the far field scan and therefore only detects
attackers appearing in the far field, leading to a failure
rate of 34.9% and a negative average reward of −2.00.
This agent presumably did not explore the environment

Table 2: Average steps taken and reward earned per episode
over 1000 evaluation episodes.

Training
iterations

Average
steps/episode

Average
reward

1000 237 −2.00
10 000 358 +0.56
100 000 265 +1.79
500 000 198 +1.46

interactions enough to learn a satisfying control strategy
due to the limited number of training iterations. With
Nit = 104 training iterations, the next agent learned to
utilize all actions such as the standby action in 21.4% of
steps to save energy, achieving a higher average reward of
+0.56. Due to a failure rate of 33.9%, this agent also did
not learn a reliable interception scan strategy. Earning
the highest average reward of +1.79, the agent trained
for Nit = 105 iterations learned to utilize the standby ac-
tion in 33.2% of steps, achieving a satisfactory total de-
tection rate of 98.3% while saving energy resources. The
longest trained agent withNit = 5·105 iterations achieves
the highest successful interception rate with 93.0% and
the highest total detection rate with 99.6%. This agent
learned to prioritize a fast detection, with the lowest av-
erage steps per episode of 198, over collecting positive
rewards by utilizing the standby action. This results in a
lower average reward of +1.46. Thus, the scaling factor
of reward terms strongly influences the agent’s control-
focus and not only the average reward should be taken
into account when evaluating the agent’s learned strat-
egy. It is apparent that more training iterations lead
to better agent policies in terms of the collected reward
and fulfilling the goal of a reliable and energy efficient
attacker detection.

Nit = 103 Nit = 104 Nit = 105 Nit = 5 · 105

Agent′s training iterations

0

20%

40%

60%

80%

100%

A
ct

io
n

d
is

tr
ib

u
ti

on

26.3%

46.2%

2.4%

32.6%

12.3%

47.2%

100.0%

19.7%

8.3%
31.8%

21.4%

33.2%

18.6%

No scan

Far field

Intermediate field

Near field

Figure 5: Action distribution in 1000 evaluation episodes
for each trained agent.

The agents exported neural networks were imported in
the Kiel Real-time Application Toolkit (KiRAT) [7],
where the presented scenario is physically more accu-
rately simulated. Therefore, the generated SONAR scan
observations slightly differ from the training environment
observations which led to a different agent behavior for
all trained agents. For example, the longest trained agent
only scanned the far field area, possibly falsely assuming
an attacker being present in that area. The influence
of observation differences on the agent’s behavior should

therefore be investigated and minimized if necessary.

Nit = 103 Nit = 104 Nit = 105 Nit = 5 · 105

Agent′s training iterations

0

20%

40%

60%

80%

100%

T
er

m
in

al
st

at
es

34.9% 33.9%

1.7% 0.4%

5.6% 8.2%

12.2%
6.6%

59.5% 57.9%

86.1%
93.0%

Interception

Detection

Failure

Figure 6: Terminal states in 1000 evaluation episodes for
each trained agent.

Conclusion and Outlook
In this work, a port security scenario was implemented
in a virtual training environment for the training of RL
agents to learn a SONAR system parametrization control
to enable a reliable and energy efficient attacker detec-
tion. With enough training iterations, the agents learned
to reliably fulfill the given goals by learning from en-
vironment interactions and adapting their strategies to
the observed environment to maximize the given reward
function. For compatibility of the trained agents with dif-
fering deployment environments, differences between the
environment observations have to be investigated. Accu-
rate stochastic modelling of the deployment observations
for the training environment could be investigated in fu-
ture work to solve the presented difficulties.

Acknowledgement
The first author is funded through the Helmholtz School
for Marine Data Science (MarDATA), Grant No.HIDSS-
0005.

References
[1] Neumann, N., Kaulen, B., Christensen, S., Schmidt,

G., 2021. Deep Reinforcement Learning for Cognitive
SONAR Systems. In Proc. DAGA 2021, Wien.

[2] TF-Agents: A library for Reinforcement Learning in
TensorFlow, 2018. https://www.tensorflow.org/

agents/. Online, last access: 20.03.2023.

[3] Hodges, R. P., 2011. Underwater acoustics: Analysis,
design and performance of sonar. John Wiley & Sons.

[4] Sutton, R. S., Barto, A. G., 2018. Reinforcement
learning: An introduction. MIT press.

[5] Bellemare, M. G., Dabney, W., Munos, R., 2017. A
distributional perspective on reinforcement learning.
In International conference on machine learning, pp.
449-458. PMLR.

[6] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.
A., Veness, J., Bellemare, M. G., ... Hassabis, D.,
2015. Human-level control through deep reinforce-
ment learning. In Nature, 518(7540), 529-533.

[7] KiRAT - Kiel Real-time Application Toolkit, 2023.
https://kirat.de/. Online, last access: 20.03.2023.

