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Abstract
Monitoring and identification of vessels and underwa-
ter objects are essential tasks for securing maritime in-
frastructures such as ports and shipping routes. Mov-
ing vessels produce characteristic sound waves based
on vessel-specific parameters such as propeller type and
speed, which can be detected by passive sound navigation
and ranging (SONAR) systems. Currently, experienced
human SONAR operators classify these sounds, often
with impressive success rates, but automated decision-
making approaches can assist new operators or even allow
autonomous systems to perform classification indepen-
dently. In our study, we developed a machine-learning-
based vessel-classification system that uses underwater
acoustic recordings to identify vessels and determine their
class. In this process, the recordings are pre-processed
with time-frequency analysis and demodulation methods
to extract features. These features are used as input to
train and evaluate a convolutional neural network (CNN)
specialized for classification. To maximize performance,
the CNN undergoes several training cycles with differ-
ent configurations and will be evaluated compared to an
extended version.

Acoustic Signatures of Vessels
Typically, a vessel has a propeller with several blades
for movement. When these blades rotate in the water,
regions of high and low pressure are created on their sur-
face, leading to the formation of bubbles. These bub-
bles are unstable and collapse, generating acoustic noise
known as cavitation noise. The acoustics of a vessel s(t)
can be described as follows [1]:

s(t) =

[
1 +

K−1∑
k=0

mk sin(2πkf0t+ ϕk)

]
vc(t) + va(t). (1)

This equation describes the cavitation noise vc(t), which
is modulated by the fundamental frequency f0. The vari-
able mk represents the modulation index of the k-th har-
monic, while va(t) denotes ambient noise. The first har-
monic of the fundamental frequency corresponds to the
rotational frequency of the propeller and can be extracted
through demodulation. Other factors contributing to the
vessel’s acoustics s(t) include machinery noise, vessel size,
speed and maneuvering actions.

Data
Most published studies on the classification of vessel
types based on their emitted acoustics are often self-
recorded and not publicly available. Currently, there are
two large publicly available databases: ShipsEar [2] and
DeepShip [3]. For training the neural network, only the
ShipsEar database was used. The ShipsEar database is
provided by the University of Vigo and was recorded us-
ing a passive SONAR system between 2012 and 2013 at
the harbor of Vigo, located in the northwest of Spain
on the Atlantic Ocean. The recordings range in length
from 15 seconds to 10 minutes and include 11 different
vessel types, categorized by size. For data acquisition,
up to three hydrophones were used, which were attached
vertically to a buoy. In shallow waters, one or two hy-
drophones were used for recording. The data was dig-
itized using a 24-bit analog-to-digital converter with a
sampling rate fs of 52.734 kHz. The database classifies
vessels into the following categories:

� Class A: Trawlers

� Class B: Motorboats, sailboats

� Class C: Ferries

� Class D: Cruise ships, ro-ro vessels

� Class E: No vessel, background noise

Preprocessing
For classifying the data using machine learning methods,
the data is preprocessed to emphasize relevant features.
The neural network receives these features as input and
determines which vessel type could have generated them.
Some recordings in the database have a duration of sev-
eral minutes. Such long signals are not necessary for
training, which is why the data is divided into multi-
ple segments. This also increases the amount of data
available for training, validation, and testing. For pre-
processing, records with a length of 2.6 s are used. Addi-
tionally, a butterworth high-pass filter with a cutoff fre-
quency of ωcut = 10Hz is applied to the data to remove
DC components. Two main methods are used to extract
features, namely time-frequency analysis and modula-
tion analysis, which provides information about the pro-
peller frequency. Time-frequency analysis is commonly
used for analyzing acoustic signals and is performed us-
ing the Short-time Fourier transform (STFT). The STFT
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Figure 1: Modulation analysis spectrogram of a tugboat
with Nmod = 512.

is given by

V (µ, k) =

NSTFT−1∑
n=0

v(kR+ n)w(n)e
−jµ 2π

NSTFT
n
, (2)

which divides a signal into multiple segments using a win-
dow function w(n). Subsequently, the Discrete Fourier
transform (DFT) of length NSTFT is computed for each
windowed segment. The frequency and time resolution
are influenced by the DFT length NSTFT and the size
of the window function w(n). The result of an STFT is
typically visualized as a spectrogram, which displays fre-
quency over time. The spectrogram of a vessel primarily
contains frequency components in the lower range, from
100Hz to 1 kHz, appearing as constant lines. A second
method for extracting vessel acoustics features is modula-
tion analysis, which can be used to analyze the rotational
frequency of the propeller and its number of blades. At
the first stage, the input signal v(n) is modulated by
several complex exponential terms, corresponding to a
frequency shift in the frequency domain,

v(n)e
−jµi

2π
Nmod

n
(3)

where i denotes the i-th subband. The modulation leads
to a complex-valued signal:

vi(n) = vi,Re(n) + jvi,Im(n). (4)

After modulation, the signal of the i-th subband is fil-
tered by the low-pass filter hi,u:

vi,LP(n) =

U−1∑
u=0

vi(n)hi,u. (5)

Due to the modulation in the previous step, filtering the
signal with a low-pass filter can be interpreted as band-
pass filtering. After band-pass filtering, the envelope of
each subband ṽi(n) is computed by taking the squared
magnitude:

ṽi(n) = |vi,LP(n)|2. (6)

The frequencies of a vessel are primarily located in the
lower frequency range. The envelopes of the subbands
are therefore smoothed with a low-pass filter gu and then

downsampled:

ṽi,LP(n) =

U−1∑
u=0

ṽi(n− u)gu, (7)

v̂i(n) = ṽi,LP(Rn). (8)

The spectrum of the envelope, which contains informa-
tion about the propeller frequency of a vessel, is obtained
by computing the DFT of length Nmod of each subband,
windowed by w(n):

Oi,Nmod
(µ) = DFTNmod

{v̂i(n)w(n)}. (9)

Similar to the STFT, modulation analysis can be visu-
alized in a spectrogram, where one axis represents the
subbands and the other axis represents the modulation
frequency. Such a spectrogram is referred to as a modu-
lation analysis spectrogram and is shown in Figure 1.

Data Variation
The performance of the neural network is heavily influ-
enced by the features of the data and their representa-
tion. To emphasize the lower frequencies, the magnitudes
of the spectrograms of the STFT and the modulation
analysis are modified accordingly. One approach is to
transform the frequency axis into the mel scale using

m = 2595Mel log10

{
1 +

f

700Hz

}
, (10)

which is inspired by human auditory perception. An-
other method for emphasizing lower frequency bands is
to transform the frequency axis into a logarithmic scale.
This is achieved by computing a logarithmic sequence
based on a chosen base and step size. For each value in
this sequence, the corresponding amplitude value from
the linear frequency axis is assigned. If the value lies
between two points, it is approximated using linear in-
terpolation. For logarithmic scaling, bases of 2 and 10
are used. Spectrograms with different frequency scales
are shown in Figure 2. All spectrograms are normalized
to a range between 0 and 1 using

xnorm =
x− xmin

xmax − xmin
. (11)

Additionally, the spectrograms differ in how their mag-
nitude is computed. The magnitude is computed using
absolute values (abs), squared magnitudes (abs squared),
and decibels (dB).

Network Layout
Due to the two-dimensional nature of the data result-
ing from the preprocessing techniques, a CNN is used
as the foundation for extracting features from the spec-
trograms. The architecture of the CNN is given in Ta-
ble 1. It begin s with a convolutional layer consisting of
32 kernels, each with a size of 5×5, and a rectified linear
unit (ReLU) activation function. This is followed by a
max-pooling layer with a size of 2× 2 for dimensionality
reduction and a dropout layer with a dropout rate of 0.5
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Figure 2: STFT with linear (1), mel (4), and logarithmic frequency scaling of bases 2 (2) and 10 (3).

to prevent overfitting. This sequence of convolutional,
max-pooling, and dropout layers is repeated, with the
second convolutional layer containing 64 kernels. Next, a
flattening layer is applied to convert the data into a one-
dimensional vector, followed by another dropout layer.
The final output of the CNN is a dense layer with five
neurons and a softmax activation function, providing the
probability distribution across all five labels.

Table 1: CNN architecture used for classification.

Layer Kernels Size Neurons Act.
Conv. 32 5× 5 / ReLU
MaxP. / 2× 2 / /
Drop. / / / /
Conv. 64 5× 5 / ReLU
MaxP. / 2× 2 / /
Drop. / / / /
Flatt. / / / /
Dense / / 128 ReLU
Drop. / / / /
Dense / / 5 SoftMax

In addition to the standard CNN, the neural network
architecture is extended with additional features. The
general architecture of the neural network is depicted in
figure 3, where the red-marked part represents the exten-
sion adding the additional features.

Four additional features are incorporated into the net-
work, extracted from the modulation analysis. These
features include the propeller frequency, identified as the
maximum value in a certain part of the modulation anal-
ysis spectrogram, the frequency band of the propeller

Figure 3: Architecture of the neural network with its exten-
sion.

frequency, its magnitude, and the input-to-noise ratio
(INR). To calculate the INR of the signal v(n), the noise
b(n) is estimated in the spectrum:

Ŝvv(µ, n) = |V (µ, k)|2, (12)

Svv(µ, k) = β Svv(µ, k − 1) + (1− β) Ŝvv(µ, k), (13)

Ŝbb(µ, k) =


max

{
Smin, Ŝbb(µ, k − 1)

}
∆inc,

if Svv(µ, k) > Ŝbb(µ, k − 1),

max
{
Smin, Ŝbb(µ, k − 1)

}
∆dec,

else.

(14)

Subsequently, the spectrum is calculated by element-wise
division of the input spectrum by the estimated noise
spectrum if a defined threshold δ is exceeded:

INR(µ, k) =

{
Ŝvv(µ,k)

Ŝbb(µ,k)
, if Ŝvv(µ, k) > δ

1, else.
(15)

A scalar value for the INR is obtained by averaging along
the frequency µ and time axes n, respectively.

a =
1

KNana

K−1∑
k=0

Nana−1∑
µ=0

INR(µ, k). (16)

DAS|DAGA 2025 Copenhagen

902



0.0 0.2 0.4 0.6 0.8 1.0

Accuracy

Abs,Lin

Abs,Log10

Abs,Log2

Abs,Mel

Sq.,Lin

Sq.,Log10

Sq.,Log2

Sq.,Mel

dB,Lin

dB,Log10

dB,Log2

dB,Mel

0.9721

0.9550

0.9659

0.9767

0.9318

0.7628

0.9147

0.8868

0.9721

0.9581

0.9612

0.9783

Figure 4: Accuracy of the base model.

Evaluation
To evaluate the performance of the neural network, the
data is split into 60% training, 20% validation, and 20%
testing. Care is taken to ensure that all datasets maintain
an identical class distribution, allowing for a reasonable
comparison of results. The neural network is trained it-
eratively for 40 epochs with a batch size of 32. Training
is conducted using Python and TensorFlow for two net-
work architectures: one consisting solely of the CNN and
an extended version with additional features. Through-
out training, validation accuracy and loss are monitored
using the validation dataset. The validation loss is com-
puted based on entropy:

J = − 1

L

L−1∑
l=0

yl log(ŷl), (17)

where yl represents the true label, ŷl the predicted label,
and L the total number of labels. The CNN is trained
using various STFT configurations. To simplify notation,
the format Power,Scale is introduced. The ”Power” index
specifies the method of power computation: Abs, Sq, and
dB, corresponding to absolute magnitude, squared mag-
nitude, and decibel scaling, respectively. The ”Scale”
index denotes the frequency scale used: Lin (linear),
Log2 (logarithmic base 2), Log10 (logarithmic base 10),
and Mel (mel scale). After training and validation, the
model’s performance is evaluated using the 20% test
dataset. The results for both the base and extended
networks are shown in Figure 4 and 5. The extended
network shows slightly improved performance, achieving
an accuracy of approximately 98.91% with the dB,Mel
configuration, compared to 97.83% for the base network
under the same configuration. Thus, utilizing the archi-
tecture of the extended neural network, the error can be
reduced by 47.88%.

Summary and Outlook
Using a CNN with the ShipsEar database, it was demon-
strated that underwater vessel recordings can be clas-
sified based on vessel size. Preprocessing the data
by transforming the time-domain signals into a time-
frequency representation yielded promising results, par-
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Figure 5: Accuracy of the extended model.

ticularly when applying a mel scale to the frequency axis
and representing the magnitude in dB. With this con-
figuration, an accuracy of 97.83% was achieved. The
classification performance was further improved by mod-
ifying the neural network. The extended model incor-
porates additional features, which are concatenated af-
ter the CNN’s flattening layer. Three of these features
are extracted from the modulation analysis, while one
represents the input-to-noise ratio (INR). This extended
architecture increased the accuracy to 98.91%. A key
limitation of the current model is its dependence on the
ShipsEar database. Applying the trained network to a
different dataset may lead to challenges, as variations
in measurement setups can significantly impact the per-
fomnce of the neural network. To develop a more robust
model, it is essential to generate as much diverse train-
ing data as possible. However, the availability of suitable
data remains a major constraint.
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Pena-Gimenez, ShipsEar: An underwater ves-
sel noise database, Applied Acoustics, Vol-
ume 113, 2016, Pages 64-69, ISSN 0003-682X,
https://doi.org/10.1016/j.apacoust.2016.06.008.

[3] Muhammad Irfan, Zheng Jiangbin, Shahid Ali,
Muhammad Iqbal, Zafar Masood, Umar Hamid,
DeepShip: An underwater acoustic benchmark
dataset and a separable convolution based autoen-
coder for classification, Expert Systems with Appli-
cations, Volume 183, 2021, 115270, ISSN 0957-4174,
https://doi.org/10.1016/j.eswa.2021.115270.

DAS|DAGA 2025 Copenhagen

903


