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Abstract: Magnetic sensors are highly relevant in clinical and industrial applications
such as localization tasks and geological investigations. The spatial behavior of these sen-
sors is of great interest for accurate forward modeling and the consequential possibilities
for sophisticated applications, e.g., solutions to inverse problems. In this contribution,
we present a novel characterization approach using adaptive system identification ap-
proaches. We utilize a gradient-based algorithm for estimating impulse and corresponding
frequency responses for a directivity analysis in 1D, 2D, and 3D. For this, we built a triaxial
Helmholtz coil setup to generate a 3D directive field. This is controlled by an algorithm
that exploits similarities in sensor behavior with respect to small differences in excitation
field angles. We found advantages for a controlled adaptation, with faster convergence
and a smaller system distance between estimations and measurements with a proposed
control based on the contraction–expansion approach (CEA). With runtimes averaging less
than 1.5 s per direction for full impulse response estimation, this proof of concept shows
the potential of the proposed algorithm for enabling a feasible frequency and directivity
characterization method.

Keywords: magnetic sensor characterization; estimation algorithms; adaptive filters; NLMS
control; magnetic field steering; impulse response; frequency response; directivity

1. Introduction
Magnetic measurements are becoming increasingly important in many areas, such

as health care [1–4], indoor localization [5–7], or the investigation of geological conditions
of the subsurface [8–10]. For many of these applications, a detailed forward model of
the magnetic sensor is essential for gaining the best possible results when solving inverse
problems. In these, a solution for, e.g., a source distribution should be determined by
computations based on measured sensor observations. Thus, a characterization of the
utilized magnetic sensors is necessary and can be achieved in various ways. The most
common evaluation of the sensor includes the impulse or frequency response, a linearity
curve, and the sensitivity [11]. The frequency response is the spectral transformation of the
impulse response, both of which are used in this paper. Magnetic sensors usually measure
one-directional projections of magnetic fields, which means they have a certain directional
characteristic (vector magnetometers). This should be considered in a comprehensive
characterization of the sensor as well [12].
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There exist a variety of established magnetic sensor concepts. Scalar magnetometers
like total field optically pumped magnetometers (OPMs) do not need a directional charac-
terization by design; for other vector sensors, e.g., superconducting quantum interference
devices (SQUIDs), it is not feasible to use these in a limited characterization setup due to
cooling requirements. Otherwise, the directional response of vector magnetometers should
be identifiable. Magnetoelectric (ME) sensors, for example, might profit from this, as the
sensitive axis of the sensing element does not always coincide with the geometry [13,14].
Similar problems might occur with other sensor types based on the magnetoresistive (MR)
effect or fluxgate magnetometry and should be identified and addressed, especially in areas
like array applications where directionality is critical.

The directivity of a vector magnetometer can, for example, be assessed by measuring
the normalized voltage response of the sensor to a defined magnetic field rotating around
the sensing volume [12]. However, this does not account for the whole frequency response
of the sensor in different directions. This is captured by the (spatially dependent) frequency
response, which usually takes some time for the measurement of a single direction. It is
nevertheless of interest to acquire the frequency response of a sensor in all directions to
obtain an idea of the limitations and possibilities of a given sensor.

A fast characterization of sensors by means of a controlled adaptive algorithm has
already been established for underwater transducers [15]. Some adjustments are necessary
to apply this method to magnetic sensors for fully automated three dimensional (3D)
characterization. In this contribution, we present a fast and robust algorithm for 3D
characterization of a magnetic sensor system by estimating the direction-dependent impulse
response. The sensor system incorporates the direct analog readout circuitry, as we are
interested in characterizing the working behavior of the system and not the sensing element
itself. Sensitive-axis frequency responses are typically measured with sine sweeps or noise
measurements over a longer period, e.g., in a Helmholtz coil setup. A direct extension
of such a measurement concept is often not feasible due to high time requirements and
vulnerability to error when it comes to manual modification of the sensor systems alignment.
Our proposed method tries to solve these issues. It is schematically visualized in Figure 1.
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Figure 1. Block diagram of overall characterization system.



Sensors 2025, 25, 995 3 of 23

The remainder of this paper is structured as follows: In Section 2, the used hardware
setup for characterization as well as the algorithm developed for fast characterization of
sensors are presented. Section 3 displays the results of multiple measurements conducted
with a fluxgate sensor. Discussion of these follows in Section 4. Lastly, a short conclusion is
given in Section 5.

2. Materials and Methods
In the following, we describe the overall characterization system investigated in this

contribution (cf. Figure 1). We distinguish the system components for magnetic field
generation and those for the adaptive estimation of the sensor characteristics.

2.1. Field Generation

The field generation for the system is comprised of hardware components and of the
software-controlled desired excitation signals.

With the underlying idea of steering a known magnetic field towards the sensor under
characterization from arbitrary directions, a triaxial Helmholtz coil setup was chosen and
built for the excitation. A picture of this is shown in Figure 2a.

(a) (b)

Figure 2. Custom hardware setup components used for measurements in this contribution.
(a) Helmholtz coils used for field generation in characterization system. (b) Rack-mountable compos-
ite amplifiers for coil excitation.

There are three orthogonal pairs of aluminum enclosures that are nested within one
another. These pairs each form individual Helmholtz coils, which are regularly used to
produce approximately homogeneous magnetic fields in their center area [16]. Here, we
chose to work with the common change in form factor from cylindrical coils to square ones,
which is well established [17].

The individual coils have Ncoil = 60 windings of enameled copper wire, each with
a conductor diameter of 0.8 mm, which corresponds to a 0.5 mm2 cross-section. After
assembly, we defined the inner coil as producing a magnetic field along the x-axis, the
mid coil that as associated with the y-axis, and the outer coil that as associated with the
z-axis. We also measured some parameters of the resulting practical setup. Regarding static
quantities, we measured the resistances and the edge lengths ℓ of the individual coils, the
results of which are summarized in Table 1. For each individual coil of a pair of coils, the
values are identical.
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Table 1. Coil parameters.

Coil Resistance (DC) Edge Length ℓ

Inner—x 2.5 Ω 306 mm

Mid—y 3.0 Ω 352 mm

Outer—z 3.5 Ω 398 mm

We used a combined digital–analog and analog–digital converter (DAC and ADC,
respectively; model Fireface UFX+; RME [18]) operated at sampling rate fs = 48 kHz in
combination with a low-noise composite amplifier (based on [19]) to excite the coils over
the three channels—one for each direction (x, y, and z). Each output channel was split
afterwards and connected to both coils of the respective direction with coaxial cables. The
supply voltage for the rack-mountable amplifier unit shown in Figure 2b is provided by a
laboratory power supply (GPP-4323; Good Will Instrument Co., Ltd., Taipei, Taiwan [20]).

In addition to the (real-valued) resistances of the coils, we had to consider the
frequency-dependent impedances to properly generate a desired magnetic field. We de-
rived the equalizers (EQs) for impedance consideration from noise excitations of each coil
pair. Therefore, we generated and recorded uniformly distributed white noise, which is
used as the DAC input and propagated to the amplifiers. With the current sensing modules
of the amplifiers, we recorded the current flow over a 100 mΩ shunt resistor. In each coil
pair measurement, we computed the power spectral density (PSD) Svv(Ω) of the voltage
signal as well as the cross power spectral density (cross PSD, CPSD) Svi(Ω) of the current
and voltage signals. Time signals of 90 s were recorded, with 1 s discarded at the start and
end to avoid the impact of possible transient behavior. The current signals were scaled by

1
100 mΩ = 10 1

Ω to account for the shunt resistance.
As parameters for the PSD calculation, the size of the fast Fourier transform (FFT) was

set to about a second with an even number of frequency bins for the filter design. We used a
Hann window of the same length as the FFT and a 50 % overlap between the signal sections.
From these calculations, the impedance Z(Ω) for a given coil measurement can be derived
as the cross power spectral density Svi(Ω) normalized by the power spectral density Svv(Ω).
Since we only used the impedances’ magnitude information for our equalizer design, we
calculated this from the complex valued results as follows:

|Z(Ω)| =
∣∣∣∣ Svi(Ω)

Svv(Ω)

∣∣∣∣. (1)

For their use as filter design target curves, we smoothed the results along the frequency
axis with a basic infinite impulse response (IIR) filter (Butterworth design, filter order 4).
The very low frequencies were not very well captured by our ADC; thus, we manually set
the values for the first 5 Hz to the coil pair resistances of 5 Ω, 6 Ω, and 7 Ω, respectively.
Furthermore, we limited the EQ design to a frequency range of interest according to the
sensor’s specifications. As we used a fluxgate sensor (FLC 100, Stefan Mayer Instruments,
Dinslaken, Germany [21], powered by the GPP-4323) with a sensitive frequency range
of 0 kHz to 1 kHz to test our presented method, we limited the design curves for the coil
equalizing filters to 2 kHz, with the signal components above remaining unchanged. Since
the impedance grows with higher frequencies and, correspondingly, lower frequencies
become dampened in the equalization approach, this choice of a bandwidth allows for
higher-signal components in the frequency area of interest.

The individual target curves are normalized to their respective maxima Zx,0, Zy,0,
and Zz,0 to obtain filters with unity gain at the maximum amplitude. With the resulting
specified target characteristics, we designed type I linear phase finite impulse response (FIR)
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filters hZ̃x
, hZ̃y

, and hZ̃z
of order Nfilter = 256 by means of a least squares approach [22,23].

The resulting magnitude behavior of the filters is visualized in Figure 3.

103 104

Frequency (Hz)

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Am
pl

itu
de

 r
es

po
ns

e 
(d

B
)

Design frequency limit

x coil
y coil
z coil

Figure 3. Magnitude of the different unity gain equalization filters. The frequency axis is scaled
logarithmically as the chosen design limit up to which the impedances are emulated (the marked
2 kHz), while measurement was performed up to fs

2 = 24 kHz.

We needed to include an additional gain correction step after imprinting the impedance
behavior with the equalizing filters to harmonize the magnetic flux densities to the coil
sizes. For the derivation of these gains, we consider the general equation for the magnetic
field at the center of a square Helmholtz coil with the vacuum magnetic permeability µ0,
the (time-variant) current through the coil i(t), the equivalent cylindrical Helmholtz coil’s
radius RH, and the voltage (noise) amplitude u0, which is the same for the different coils.
When a specific coil’s quantity is described, the respective Cartesian direction is used in the
variable’s indices. Thus, we obtain the equation

Bx(0, t) =
8√
125

µ0Ncoilix(t)
RH

(2)

∝
µ0Ncoilix(t)

√
π

ℓx
(3)

∝
u0

Zx,0ℓx
(4)

to describe this field for the x coil at the center of the pair. We use this coil as the reference
and thus set its additional gain to βx = 1. The gains for the y and z coils follow from
equating the different parameter versions for (4) as

βx
1

Zx,0ℓx
=

1
Zx,0ℓx

!
= βy

1
Zy,0ℓy

!
= βz

1
Zz,0ℓz

(5)

⇒ βy =
Zy,0ℓy

Zx,0ℓx
, βz =

Zz,0ℓz

Zx,0ℓx
, (6)

which are quantified for our setup with the chosen replicated frequency area in Table 2.

Table 2. Equalizer parameters.

Equalization Target Coil Normalization Impedance Z0 Resulting Gain Factor β

Inner—x 62.1076 Ω 1.0

Mid—y 62.3548 Ω 1.1549

Outer—z 54.5292 Ω 1.1419
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The described hardware together with the equalization procedure then enables the
generation of very similar individual homogeneous fields with the different coils using
the same excitation signal. This, in turn, means that we are able to produce arbitrarily
directed fields by defining an elevation and azimuth angle—θ and φ, respectively. These are
relative to the center of the coil system and transformed from these spherical coordinates to
Cartesian coordinates to scale the excitation signal for the individual coil channels. For this,
we chose a uniformly distributed white noise signal x(n) to enable characterization of all
sensing frequencies at once. With specific given angles θ0, φ0, this leads to the coil channel
excitation signals

vx(n) = βx

(
hZ̃x

∗
[
x(n) sin(θ0) cos(φ0)

])
, (7)

vy(n) = βy

(
hZ̃y

∗
[
x(n) sin(θ0) sin(φ0)

])
, (8)

vz(n) = βz

(
hZ̃z

∗
[
x(n) cos(θ0)

])
, (9)

which are calculated programmatically and then passed as voltages to the DAC. Practically,
we designed the software system to calculate the desired directions and resulting Cartesian
weights automatically from given inputs. When a single direction (1D) is desired, this is
typically measured in-plane with the plate in the center of the coils and a singular offset
angle can be introduced. This is also possible for a planar 360◦ (2D) characterization around
a fixed axis (e.g., z-axis) with a number of equal, discrete angular steps Nφ. The reference
axis for both 1D and 2D characterization can also be changed. In a full 3D characterization
scenario, the number of discrete steps can be set for azimuth and elevation (Nθ) separately.
The used angle pairs are derived from the division of 360◦ and 180◦, respectively, which
results in a total number of directional steps of Nsteps = Nθ Nφ.

2.2. Adaptive Filter

In this contribution, we assume a high similarity between sensor system responses
to magnetic excitation from similar directions. We want to exploit this by initializing a
directional response estimate with the last finished estimate from an orientationally close
excitation. For that, we use a normalized least mean squares (NLMS) algorithm to estimate
the sensor’s impulse response

h =
[

h0, h1, . . . , hN−1

]T
(10)

of length N. We assume a maximal filter length that can capture the full sensor behavior.
Our goal of a precise impulse response estimation is a system identification task for which
a generalized representation based on [24] is shown in Figure 4. Here, idealized digital–
analog conversions and vice versa are assumed. This is also assumed in the following
derivations to highlight the parallels between the physical system and the estimated model
taken advantage of by the NLMS.

The sensor produces the ideal sensor output d(n) due to excitation with the signal
x(n), which is connected via the impulse response by the relation

d(n) = hTx(n). (11)

The respective signal vector x(n) consists of the last N samples of the corresponding time
signal. This ideal output is then superimposed by some noise b(n) from various sources
(e.g., magnetic (Barkhausen) noise, electromagnetic noise from circuit components such as
amplifiers and superimposed interference signals, 1/ f noise, mechanical noise [25,26]) to
produce the measured output signal
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y(n) = d(n) + b(n). (12)

The adaptive filter ĥ(n) is excited with the same signal x(n) and provides an estimated
output signal

d̂(n) = ĥ
T
(n) x(n), (13)

which ideally should reproduce the measured output for the sensor. Correspondingly,
the error for this adaptive filter is defined as

e(n) = y(n)− d̂(n), (14)

with a small error indicating a good adaptation of the filter to the actual sensor system
(including noise); thus, the error is a good estimate of the sensor characteristics for the
chosen excitation. Only real-valued time signals are considered in this work, so notation
considering generally possible complex-valued signals is omitted. We also use a reference
channel to eliminate the influence of digital–analog conversions and vice versa in the
overall system (cf. Figure 1) by using a direct feedback channel in addition to the coil
excitation channels on the output and the sensor voltage at the input.

Sensor system

NLMS filter
Figure 4. Adaptive filter used for system identification.

We use the adaptive identification approach with the minimization of the expected
value of the system distance between the real sensor and the estimated system

E
{∥∥∥∆h(n)

∥∥∥2
}

= E
{∥∥∥h − ĥ(n)

∥∥∥2
}

(15)

as our optimization target over time [24]. The adaptation procedure is generally based on a
gradient-based incremental linear change to the current filter estimate ĥ(n) from one time
step to the next. Thus, a general update of the filter coefficients can be described with the
time-varying scaling step size term µ(n) and a correction term ∆corr

(
x(n), e(n)

)
depending

on the excitation signal vector and error signal as

ĥ(n + 1) = ĥ(n) + µ(n)∆corr
(

x(n), e(n)
)

(16)

with the correction depending on the chosen adaptation scheme. Our choice for this scheme,
as mentioned above, is the NLMS algorithm, which extends this correction term to

∆corr
(
x(n), e(n)

)
= x(n)

e(n)

∥x(n)∥2 . (17)
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We cannot influence the update term directly, as it only depends on the (random)
excitation signal vector, which we define as the last N samples of the discrete signal used
for the field generation calculations (see Section 2.1) and the resulting error signal. The
normalization employed is relative to the excitation signal vector’s norm, which can be
efficiently calculated by the recursion

∥x(n)∥2 = ∥x(n − 1)∥2 − x2(n − N) + x2(n), (18)

as described in [24] with a robust implementation that we used as a template [27].
To tune the adaptive filter towards the desired behavior (a minimal remaining system

distance with fast convergence), we can instead influence the filter update in (16) via the
step size parameter. An alternative would be the control of the filter behavior relying
only on a regularization term as the divisor to the correction term ∆corr

(
x(n), e(n)

)
or a

combination of both approaches [24]. Since these are mutually convertible and previous
work uses step size control [15], we also choose a step-size-only approach.

For a stable update behavior of the algorithm, the step size has to be between 0 and 2.
In the most naïve approach, we can use a constant step size µ(n) = µfix. A step size close
to, but not exceeding, 1 leads to a fast adaptation with the trade-off of a comparatively
higher system distance. Conversely, a small step size (close to 0) can achieve a smaller final
system mismatch over a longer adaptation time [24].

Time varying step size control approaches try to mitigate this trade-off by using a large
step size at first for a fast convergence and by gradually reducing the factor to arrive at a
more desirable system distance. In contrast to [15], we do not consider a remaining system
component as a part of the sensor system noise, since the decay behavior is assumed to be
much faster in the electromagnetic domain in contrast to (underwater) acoustics.

We get a pseudo-optimal variable step size based on the mean power of the undis-
turbed error eu(n) in the form of

µopt(n) ≈
E
{

e2
u(n)

}
E{e2(n)} (19)

as derived in [28]. The undisturbed error describes the actual difference between the ideal
sensor output and the filter output signal

eu(n) = d(n)− d̂(n). (20)

When taking into account practical implementations, we can neither use expectation
operators as in (19), nor have knowledge of the ideal sensor output. Thus, we use short-
term smoothing for the estimation of the expected values. Our smoothing, denoted by an
overline, uses a two-parameter IIR filter approach [24]: the power of an example signal
s(n) is combined with the smoothing parameter γ(n) according to

s2(n) =
(
1 − γ(n)

)
s2(n) + γ(n) s2(n − 1). (21)

To account for differences in smoothing behavior for rising and falling signal power, the
smoothing parameter is set to a rising constant γr if the instantaneous power exceeds the
previously smoothed short-term power and to a different falling constant γf otherwise:

γ(n) =

γr, if s2(n) > s2(n − 1),

γf, else,
0 < γr < γf < 1. (22)
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In addition to this, we split up the undisturbed error power into excitation power and the
estimated system distance with a new symbol Γ(n) [15]. This leads to the general variable
step size

µ̂(n) =
e2

u(n)

e2(n)
=

x2(n)Γ(n)

e2(n)
, (23)

which is now only missing the system distance estimate. We employed two different
methods for this estimation, which will now be described.

The first method is dead-time (DT) coefficient-based system distance estimation. Here,
we assume that the length of the target impulse response is shorter than the (accordingly)
chosen length of the adaptive filter N. Consequently, a number of coefficients NDT at the
end of the adaptive filter ĥ(n) should be zero for a correct system identification as[

hN−NDT−1, hN−NDT , . . . , hN−1

]
= 0 (24)

is assumed. Since the estimation error for an adaptive filter is spread equally among its
coefficients [24], an estimate of the system distance can be calculated according to

Γ̂DT(n) =
N

NDT

N−1

∑
j=N−NDT−1

ĥ2
j (n), (25)

as introduced for artificial delays in [28].
In addition to employing this approach as a standalone solution for the estimation of

the system distance, the result is utilized as the initial value for the contraction–expansion
approach (CEA) for step size control (cf. [15]). For this, we use the contraction parameter
A
(
µ, N

)
describing the theoretical adaptation in undistorted conditions, defined for our

case as

A
(
µ̂(n), N

)
=

µ̂2(n)
N

− 2 µ̂(n)
N

+ 1, (26)

and the expansion parameter B
(
µ, N

)
, both formulated only with regard to step size

(without regularization), as

B
(
µ̂(n), N

)
=

µ̂2(n)
N

, (27)

which encompasses the influence of noise on the adaptation process [24]. Together, they
enable the description of a propagating system distance estimate Γ̂CEA(n) depending on
the previous estimation, the power of the excitation signal estimated by its smoothed
short-term value, and the estimated noise power σ̂2

b , formulated as

Γ̂CEA(n) = A
(
µ̂(n − 1), N

)
Γ̂CEA(n − 1) + B

(
µ̂(n − 1), N

) σ̂2
b

x2(n)
(28)

according to [15,24]. As mentioned above, the estimate Γ̂DT is used to initialize this estima-
tion, since the approach only acts iteratively on this initial guess and should therefore be
determined by a reasonable assumption given by the dead-time concept. The estimation of
the noise power is achieved in a short, adjustable period of Nb samples before the start of
the actual adaptation process. For this, the excitation signal is set to zero and the smoothed
sensor signal power is averaged over the given period:

σ̂2
b =

1
Nb

Nb−1

∑
k=0

y2(k). (29)
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To avoid possible transient effects distorting the characterization at the start of ex-
citation after this noise estimation period, there is also a short settling period of Nset

samples afterwards in which the first excitation signal is active but before the adaptation
process starts.

With all of these step size options, we have several thresholds and conditions to
determine when which approach is used. Firstly, at the start time n0 of adaptation from a
new direction, we use a time-based threshold Nfix up to which we use a fixed step size µfix.
This is to account for the known change of the overall system—that is, the change in the
direction of the excitation field—which is bound to change the system behavior and thus
lead to a sudden increase in the system distance. The fixed step size enables us to adapt to
the new system behavior quickly and to enable the system distance estimate to readjust to
new circumstances.

After that, we use the ratio e2(n)/y2(n) between the smoothed error signal power and
the smoothed sensor signal power as an indicator of convergence. When this falls below a
threshold ηfix, the system distance estimate Γ̂DT is used to determine the step size as follows:

µ̂DT(n) = min

{
1,

x2(n) Γ̂DT(n)

e2(n)

}
. (30)

Once we fall below a threshold ηDT, we then initialize the CEA system distance Γ̂CEA and
use it for the calculation of our step size:

µ̂CEA(n) = min

{
1,

x2(n) Γ̂CEA(n)

e2(n)

}
. (31)

In any case, we use a minimum operator around the time-variant step sizes to ensure a
valid step size µ̂(n) ≤ 1 even in situations where the estimates might produce a larger
result. This overall control scheme is visualized in Figure 5.

On top of the different approaches to determine the step size, we have the added
control dimension of the field steering (in contrast, e.g., to [15]). We aim to characterize
the sensor impulse response in different directions, which is why we use the weighted
excitations to generate a field in the current direction of interest. Thus, as mentioned above,
we start with a noise evaluation period, followed by a settling period under excitation,
and then the actual adaptation process begins for the first field orientation. The change of
position is initiated only after full frames due to the way the excitation signals are driven
via the DAC. The frameshift Nframe should therefore be chosen to be sufficiently small
for a quick response to an orientation change event. Any orientation-control-related time
thresholds as well as the periods for the noise power estimation and settling are rounded
to the next full frameshift in the implementation accordingly. The different steering control
thresholds are introduced in the following.

To avoid erroneous jumps to a next position due to behavior right after a directional
change as well as the filter becoming stuck in a position for too long due to unsuitable
parametrization, there are thresholds for a minimal and maximal time for each position,
Nmin and Nmax. For a quality assessment, we use the estimate Γ̂DT, as this is grounded in the
actual current filter coefficients, and use this to determine a sufficiently good convergence
of the NLMS algorithm. When the threshold ζsuff is reached, we thus store the current filter
estimate as our characterized impulse response for the present field direction and move to
the next one.
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Figure 5. Visualization of the step size determination. The three possible step size outcomes are
color-coded as blue for fixed step size, orange for dead-time (DT)-based step size, and purple for a
step size based on the contraction–expansion approach (CEA) in both figure parts. (a) Flow chart of
the threshold steps to determine the correct step size. (b) Example graph of a possible progression of
the error/sensor ratio. The plot is purely illustrative and not based on real data.

A fallback is triggered if the average sensor power over a frame is too close—quantified
by the threshold value ζSNR—to the estimated noise level, in which case the step to the
next orientation is triggered as well. This is due to the fact that a directional sensor also has
insensitive directions in which no sufficient system distance can be reached as the sensor
signal does not carry enough information to arrive at a sensible estimate—the correct
sensor response estimate would basically be zero (plus measurement noise). This can
be formalized for a frame index k as the average frame estimate of the signal-to-noise
ratio (SNR)

SNR(k) =

1
Nframe

Nframe−1
∑

i=0
y2(k · Nframe + i)

σ̂2
b

. (32)

To summarize, the switch to the next field direction is triggered when

n − n0 > Nmin (33)

holds and any of the conditions

Γ̂DT ≤ ζsuff, (34)

SNR ≤ ζSNR, (35)

n − n0 > Nmax (36)

is true.
At a new field orientation, the filter coefficients stay the same and function as an

initialization for the new directional response. Since the change in direction is relatively
small for a sufficiently detailed choice of orientation points, the change in the sensor
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response is assumed to be small and, as such, the initialization with the previous coefficients
is reasonable.

3. Results
The following section first describes the general parameters and implementation

details used to test the presented algorithm. We present different findings from analysis
of estimation runs in one axis, two-dimensional planes, and fully 3D directional impulse
response estimation. This structure is used to highlight and analyze different aspects of the
algorithm in a scaling fashion.

3.1. Parameters and Realization Details

As mentioned in Section 2.1, we used an FLC 100 fluxgate sensor [21] for the proof
of concept experiments performed in this work. To circumvent a significant influence of
signal breakthrough at its self-excitation frequency around 13.5 kHz, we employed a digital
notch filter around this frequency after analog–digital conversion with the used ADC. The
filter is designed with its center frequency at 13.5 kHz, a bandwidth of 200 Hz, and a gain
of −40 dB.

While some parameters were changed depending on the type of characterization to
enable the analysis of specific workings of the algorithm, most were kept the same to
provide comparability and transferability to the different experiments.

The parameters were chosen empirically based on experience gained during system
development. Smoothing factors and thresholds are based on a trade-off between control
response and estimation accuracy, and the filter length is set long enough to capture the
full apparent impulse response.

The algorithm’s parameters are collected in Table 3.

Table 3. Collection of algorithm parameters in the experiments. Values in colored cells are used in all
indicated experiments.

Parameter Symbol
Value

1D 2D 3D
Frameshift Nframe 512 (10.67 ms)

Filter length Nfilter 20 ms
Noise estimation period Nb 1 s

Initial settling period Nset 1 s
Time period with fix step size Nfix 32 ms

Smoothing factor rising γr 0.997
Smoothing factor falling γf 0.999
DT estimation interval NDT 200 (4.17 ms)

Adaptive control threshold ηfix −10 dB
CEA control threshold ηDT −15 dB

Minimum time threshold Nmin 30 s 50 ms
Maximum time threshold Nmax 30 s 5 s

Noise offset threshold ζSNR — 27 dB
Number of elevation steps Nθ 1 60
Number of azimuth steps Nφ 1 360 120

System distance quality threshold ζsuff — −78 dB −72 dB
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3.2. 1D Estimation, Control Schemes and Step Size Behavior

First, we examined the algorithm without any influence of the orientation control—
simply exciting one field direction in line with the assumed sensitive axis of the sensor
under characterization. For that, we set the number of azimuth and elevation steps, Nφ and
Nθ , respectively, to 1 and the time thresholds to Nmin = Nmax = 30 s as shown in Table 3.
As we wanted to investigate different control schemes, we performed four different runs of
the experiment: two runs with fixed step sizes of µ̂ = 1 and µ̂ = 0.1, respectively, one run
with a DT controlled step size, and one run with a CEA controlled step size. Our goal was
a comparison of the resulting impulse response estimates and measuring the adaptation
behavior with regards to the system distance and the step size.

The resulting normalized impulse response estimations are visualized in Figure 6. The
upper left depicts the impulse response estimated with a large fixed step size, which clearly
leads to a noisy estimate. The smaller fixed step size (upper right) reduces this erratic
nature in the long tail somewhat; it is, however, still less smooth than the estimation results
from the adaptively controlled runs. Between these, the DT (lower left) and CEA (lower
right) control do not show a visually distinguishable behavior and show only minuscule
differences in the exact timing of the impulse peak.
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Figure 6. Comparison of the normalized impulse response estimation results after complete 1D
adaptation runs. The more polished and smooth nature of the estimates resulting from adaptive step
size control schemes is clearly observable, while a clear distinction is not visible between the DT and
CEA controlled results.

Next, we look at the smoothed system distance estimates calculated by our algorithm
(cf. Figure 7). The DT-based system distance estimation Γ̂DT(n) is performed for all four
experiments, as it is only based on the current impulse response approximation (cf. (25)).
The CEA system distance Γ̂CEA(n), on the other hand, is only derived when this control
scheme is used. The experiment with a fixed step size of 1 (green) shows a steep convergence
at the start of adaptation but stabilizes around a relatively large system distance of −60 dB.
A smaller, fixed step size of 0.1 (purple) can achieve a lower remaining system distance
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after adaptation but it takes significantly longer for the first adaptation, observable from the
much less steep convergence in the first second. Both adaptive control approaches achieve
a similar convergence speed with the (fastest possible) fixed step size of 1; they are also able
to surpass both fixed step size runs with their ongoing system distance estimations. The
DT-controlled adaptation (blue) shows a higher fluctuation in its system distance estimate
in comparison with the CEA control (red). The latter shows a deviation between the DT and
CEA estimation for the system distance with the CEA estimate (dotted) achieving smaller
modeled distances based on the initial behavior. Overall, both adaptive approaches led to
significant improvement, with the model based on CEA showing potential in achieving
lower remaining errors.
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Figure 7. Adaptation plot of the estimated system differences from 1D measurements with different
step sizes. As a reference, the DT estimates of the system distance with fixed step sizes of 1 (green)
and 0.1 (purple) are shown. The former adapts fast but stays at a relatively imprecise system distance
while the latter needs more time during the initial adaptation with a better ending plateau. DT (blue)
and CEA (red) controlled adaptations lead to less of a plateau and generally smaller DT-based system
distance estimates with a fast initial convergence. The CEA controlled measurement also shows the
CEA-based system distance estimate as a dotted line.

The difference in the resulting step size behavior is visualized in Figure 8 with logarith-
mic scaling for better differentiation in small step size ranges. Both experiments with fixed
step size obviously lead to constant behavior over the whole 30 s adaptation time frame.
The adaptively controlled step sizes qualitatively resemble the different system distance
estimates, which is expected due to their proportional calculation (cf. (30) and (31)). With
the smaller step size at later adaptation times and an ever-decreasing modeled system
distance estimate for CEA control, however, a smaller remaining error between system
model and estimated physical sensor system is theoretically achievable [24]. This is of
interest for the use case presented in this work.
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Figure 8. A comparison of the development of the different control step sizes over the course of
the 1D adaptation runs. The fixed step sizes are plotted for comparison. A more erratic behavior
of the DT-controlled step size at overall larger values at later stages of the adaptation compared to
the CEA-based step size can be observed. The y-axis is scaled logarithmically for a more visible
separation of the two adaptive step sizes’ behaviors.

3.3. 2D Estimation, Threshold Analysis, and Adaptation Behavior

With the 1D experiments investigated above, we heuristically tested and chose param-
eters for our proposed algorithm. In addition, a general proof of principle in the domain
of interest was reached for the CEA control. Thus, we wanted to check the algorithm’s
behavior for the 2D case, as it allows for simplified visualization compared to a 3D experi-
ment. We aimed to gather information on the adaptation behavior of different positions
investigated in the stepwise algorithm procedure as well as the respective step size be-
havior and the control of the direction index based on the proposed threshold approaches.
Furthermore, we analyzed the resulting sensor response estimates from our experiment.

To gain knowledge about the temporal behavior and directional control, we visualize
different internal quantities calculated by our algorithm—the smoothed short-term powers
of the error signal e2(n) (dark blue) and measured sensor signal y2(n) (green), the estimated
noise power σ̂2

b (red dotted), and the two different versions of the system distance estimate,

Γ̂DT(n) (ochre) and Γ̂CEA(n) (purple). For reference, we also plot the chosen threshold
ζsuff = −78 dB (grey dash-dotted) used for directional control. In a second axis, we also
visualize the time-dependent step size behavior, once more on a logarithmic axis. This can
be seen in Figure 9.

Before the initial adaptation start at time 0 s, the noise estimation and settling periods
are visible. The estimated noise power σ̂2

b results from the average sensor power y(n)
during the first of those. Afterwards, the field around the sensor is already driven at the
first position but the adaptation is not yet started. With the start of the adaptation process, a
similar behavior to the 1D estimation is visible. At a slightly fluctuating sensor input signal
due to the noise excitation, the error and, correspondingly, the system distance estimates
drop steeply with the start of adaptation. As before, the CEA estimate decreases below
the DT estimate after a while, with the step size following this decreasing trend due to
the corresponding step size control. The measurable error levels off more quickly but the
system distance can be reduced by the proposed algorithm nonetheless. Most directional
steps at the visualized start of the experiment show the directional change to the next
position step being triggered by a sufficiently small system distance (according to (34)) with
examples for the maximum time threshold (cf. (36)) being visible as well (e.g., the second
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position). At the start of each new direction, the jump of the step size to 1 for a short period
Nfix is clearly visible in the lower axis of Figure 9.
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Figure 9. Visualization of the adaptation behavior over the starting period of a 2D adaptation
measurement. The continuing, beneficial model adaptation is visible, as is the change in the system
triggered by a sufficiently good estimate or a time-based threshold. A new direction’s short starting
time with a step size of 1 can also be discerned from the progression of the adaptive step size in the
lower plot controlled by the CEA.

A full run of our algorithm in the 2D case with the parameters shown in Table 3 took
around 461.48 s or 7.69 min. At an angular resolution of 1◦, this results in an average of un-
der 1.3 s per direction. The resulting matrix of estimated impulse response coefficients over
the angles can be visualized similarly to a spectrogram by calculating the corresponding
frequency responses (Figure 10).

The magnitude was calculated from the impulse response estimates by taking the
absolute values from a real-valued FFT algorithm (rfft implementation in SciPy [29,30])
with an FFT size of 8192 (zero padding interpolation). As the expected bandwidth of the
sensor extends to 1 kHz and the estimate cannot be expected to be accurate above 2 kHz (cf.
Section 2.1), we only show the frequency up to around 1.4 kHz on the y-axis. The response
is then encoded by a color for the magnitude of a specific bin and is plotted for each of the
360◦ (x-axis). The low-pass characteristic is clear in and around the sensitive axis (0◦, 180◦,
and 360◦), as is the cosine-like behavior with insensitive areas around 90◦ and 270◦.

The directivity behavior is clearly visible when showing singular frequency bins only
over the angular directions. This leads to the polar representation plotted in Figure 11.
Here, the frequency responses are based on a shorter, 512-sized direct implementation of a
magnitude discrete Fourier transform (DFT) that is directly calculated at runtime with the
algorithm to provide visual feedback during experiments. Estimated responses from every
second bin were chosen and are depicted in the figure, this time being encoded by lighter
colors. This shows the directivity pattern in a more tangible fashion, while also providing
the low-pass information due to the shrinking radial dimensions at higher frequency bins.
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Figure 10. Spectrogram-like visualization of the results of a 2D estimation run. The frequency
response is plotted over the 360◦ measured on the x-axis with the y-axis depicting the frequency bins
up to around 1.4 kHz. The color encodes the respective magnitude derived via FFT from the impulse
response estimations. The expected behavior with a low-pass characteristic at around 1 kHz and
insensitive directions at 90◦ and 270◦ is clearly visible.
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Figure 11. Alternative visualization in a polar plot of the 2D estimation results. The radial compo-
nent corresponds to the magnitude at the respective angular direction. The color encodes different
frequency bins in the estimated frequency response. The expected cosine behavior is clearly ap-
parent and the low-pass characteristic is discernible from the much smaller magnitudes of higher
frequency bins.
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3.4. 3D Estimation and Adaptation Times

Lastly, the algorithm was tested for the intended full 3D directivity estimation. We
chose a slightly lower resolution of 3◦ in azimuth and elevation as well as a higher tolerance
with regards to the target system distance ζsuff. We also changed the axis of rotational
symmetry to the x-axis, so that the direction of the excitation field looped around the
sensor’s sensitive axis.

Due to the added dimension, a visualization of only a single frequency bin around
598 Hz is shown in Figure 12. This can be seen as an expansion of the polar plot for the 2D
experiment, where the radial distance of a scatter point to the origin corresponds to the
estimated magnitude of the sensor at the shown frequency with a field excitation from the
radial direction from the origin. In addition, the color in this figure maps the time taken
for adaptation to the individual points of estimation. It is visible that only the estimations
around the insensitive area show up red with higher adaptation times.

Figure 12. Scatter visualization of the estimation results of a 3D characterization, shown for an
exemplary frequency bin in the sensitive range of the sensor at 598 Hz. Each individual point
represents a single estimation position, with the radius to the center showing the strength of the
magnitude. The color mapping encodes the time taken for adaptation at each field direction before
switching to the next direction of interest.

The overall 3D estimation run took around 2435.1 s or 40.59 min. With NφNθ = 7200
points, this results in an average of under 0.34 s per direction. This speedup is related to
the higher tolerance of the target threshold, but could also be caused partly by the higher
overall points with generally faster adaptation. Not only the average adaptation time is of
interest but also the times for an individual direction. A visualization of these adaptation
times is shown in a position-index-based and histogram form in Figure 13.

Here, we can once more see the increase in adaptation times around the sensor’s
insensitive direction because of the low amount of information available to our algorithm
due to the bad SNR of the sensor response. When the sensor signal power becomes low
enough, the fallback condition (32) is triggered, which leads to minimal adaptation times for
these directions (middle). The histogram gathers the individual adaptation times into bins
of small ranges, showing a strong dominance of sub-second times. Still, from the spread
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over the directions, a trend is visible for a higher frequency of slightly longer adaptation
times towards the start and the end of the experiment. These correspond to the sensitive
areas of the sensor under investigation and were expected to have a higher SNR and thus a
better adaptation behavior.
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Figure 13. Histogram visualization of the adaptation time over the directivity positions. A stark
increase in adaptation times leading up to the sensor’s insensitive direction is apparent, which is
mitigated due to the explained fallback thresholds. The relative frequency of different ranges of
adaptation times on the right shows an overall cumulation of most positions in the sub-second range.

4. Discussion
Overall, we were able to show the working principle of the algorithm proposed in

this contribution together with the dedicated hardware setup built for it. We achieved the
goal of estimating directive sensor system behavior by means of its impulse and frequency
response model with relatively high directive resolution at short system runtimes.

A 1D experiment was performed with two different fixed and adaptive step sizes,
the latter controlled by DT and CEA, respectively. We found the expected trade-off for fixed
step sizes with a larger step size leading to faster convergence and a smaller step size to
a smaller remaining system distance. We were also able to achieve fast convergence and
smaller resulting system distance estimates with both adaptive control schemes. The better
behavior of the CEA control, with the potential to achieve even lower remaining system
distance estimates, shows the control approach’s potential and success. However, further
investigation of the two distance estimations would be beneficial for a more comprehensive
understanding of the algorithm behavior in future work. The DT estimate in this work
might also be investigated further with a practically introduced artificial delay instead of
relying on assumptions about the sensor ringdown.

The 2D experiment was conducted to check the directional control part of the proposed
algorithm. Recorded internal signals show similar behavior for the individual adaptation
steps and a working logic to change the excitation to the next planned field direction. With
a resolution of 1◦ and a target system deviation of −78 dB, a full estimation was performed
in well under 8 min. We proposed different frequency-, direction-, and sensor response-
dependent visualizations for the resulting estimations, which clearly show the algorithms
capacity to model the sensor’s cosine-like directivity and low-pass frequency behavior. Due
to the chosen design frequency limit for the coil equalizers (2 kHz), the analysis is limited
to frequency ranges below this limit.

Lastly, the 3D directivity frequency response estimation targeted in this contribution
was realized. With 3◦ resolution—120 and 60 steps in azimuth and elevation direction,
respectively—and a target system distance of −72 dB, the full algorithm run took under
41 min, which is very fast for the amount of directions with full impulse response estimates.
Thus, a lot of directional and frequency response information can be gathered with the
proposed method. This suggests the exploitability of the correlation of the response of a
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magnetic sensor to excitation from a directionally similar field. Adaptation times are in
general very fast, with a trend of slightly slower adaptation in areas with a larger overall
sensor response. A reason for this might be that the sensor’s estimated impulse response
ĥ(n) has a higher amplitude for these areas. This might lead to higher remaining noise on
the dead-time coefficients and thus a larger DT system distance estimate Γ̂DT(n), preventing
the triggering of the next step by the directional control. Spikes in adaptation time close
to the sensor’s insensitive direction were expected with an SNR-based threshold in place
to mitigate the slowing down of the overall processing. With a different choice of this
parameter, the occurrence of these spikes and their respective influence on the overall
runtime might be mitigated further.

The presented work naturally has limitations that are not within the scope of this
contribution. The conducted experiments were performed only with one sensor, which
does not guarantee comparable results with other sensors. The system parametrization (e.g.,
EQ design) also incorporated a priori knowledge on this investigated sensor type. Further
work could investigate the applicability of our findings to magnetic sensors in general.
This would include a change of the EQ design to equalize the coil system in the range
of the expected sensor bandwidth. Furthermore, other sensor technologies might need
adapted parameter sets, e.g., with adjusted filter lengths for a different impulse response
behavior, and additional readout electronics to match the devices’ dynamic ranges to the
operational ranges of the ADC and DAC components. Otherwise, different converters
might also be employed. Generally, the proposed estimation is only expected to cover linear
sensor behavior and not possible nonlinear operation points due to the linear nature of the
FIR structure adapted by the NLMS algorithm. To estimate nonlinear behavior, a different
adaptation structure of, e.g., a Volterra series would be necessary.

The proposed equalization is limited in accordance with the generating coils and cross
talk between coils cannot be ruled out entirely. Thus, there might be a deviation between
the calculated, ideal excitation field direction and the field the sensor is practically exposed
to. As the setup actively generates a field, it is not in a shielded environment and is thus
limited to uses with magnetic sensors working in unshielded conditions. This relates to
the additional impact of the potential influence of external fields, e.g., Earth’s magnetic
field or stray fields by nearby equipment, on the sensor’s output. We do not assume a large
impact due to the significantly higher strength of the applied fields. Further research is
needed to assess possibly introduced low-frequency drifts and similar possible implications.
However, this is beyond the scope of this proof-of-principle study.

At the current stage, the resulting impulse and derived frequency response estimates
give a qualitative insight into the sensor behavior. They do not contain explicit information
about the sensor sensitivity as the goal for this contribution is focused on a qualitative (not
quantitative) description.

To convert this into absolute sensitivity measurements, a reference sensor with known
sensitivity could be used with identical field actuation in one direction. From such knowl-
edge of the absolute field, the arbitrary units could be related to quantitative sensitivity
measures. A different approach could be the deviation of theoretical field strengths based
on the Helmholtz coil equations (cf. (2)) with measured currents through the coils.

The runtime of the multidimensional estimations of the algorithm and the estimated
quality (given by the system distance) of the respective results depend on the chosen
parameters. More investigated field directions and a smaller target system distance can
lead to longer runtimes, with a possible gain of higher-quality results. A trade-off must be
made depending on the individual objectives and overall conditions of a measurement. A
quantitative analysis of the influence of different algorithm parameters could be studied



Sensors 2025, 25, 995 21 of 23

with a potential investigation of optimization procedures for ideal parameter combinations
for distinct objectives.

5. Conclusions and Outlook
In this paper, we introduced a novel magnetic sensor characterization scheme based

on adaptive filters. Our algorithmic approach uses an advanced CEA step size control
to achieve fast and precise convergence of the NLMS algorithm for an impulse response
estimation. We also implemented several threshold-based control mechanisms to steer a
magnetic field generated by a self-built 3D Helmholtz coil setup for an automatic estimation
procedure of 3D directive impulse response behavior. The resulting full system was used
for 1D, 2D, and 3D estimation experiments. Due to the scope of this proof-of-concept
contribution, some limitations remain, e.g., the qualitative nature of the resulting sensor
response estimates without explicit knowledge of the sensitivities.

The system presented in this contribution provides a foundation for the future possi-
bility of time-efficient, directivity-dependent analysis of magnetic sensors and, therefore,
high-throughput characterization of changing devices in research or production environ-
ments, for example, in medicine. This could significantly impact application research
dealing with sensors lacking the desired characterization information, especially where
this is needed for solving, e.g., inverse problems that could use the results for respective
modeling [31]. Overall, this could lead to more sophisticated models in applications de-
pending on the directivity information of magnetic sensors and, consequently, to increased
accuracy and development speed.
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Abbreviations
The following abbreviations are used in this manuscript:

1D One-dimensional

2D Two-dimensional

3D Three-dimensional

ADC Analog–digital converter

CEA Contraction–expansion approach

CPSD Cross power spectral density

CRC Collaborative Research Centre

DAC Digital–analog converter

DC Direct current

DFT Discrete Fourier transform

DT Dead time

EQ Equalizer

FFT Fast Fourier transform

FIR Finite impulse response

IIR Infinite impulse response

ME Magnetoelectric

MR Magnetoresistive

NLMS Normalized least mean squares

OPM Optically pumped magnetometer

PSD Power spectral density

SNR Signal-to-noise ratio

SQUID Superconducting quantum interference device
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