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1 Introduction

In this lab the spectral content of a measured time-series signal will be determined. The-

refore various methods for spectral analysis or spectral estimation will be studied.

Spectral analysis was �rst examined by Schuster in 1898 for detecting cyclic behavior

in time-series. The word �spectrum� is derived from the latin word �specter�: �I'm being

observed�. Newton used the word �spectrum� to describe the decomposition of white light

into various colors.

There are many applications of spectral analysis. In mechanical engineering the wear

and tear of the mechanical parts like balls and bearings can be analyzed using measured

signals. In speech signal processing, speech analysis and many speech enhancement tech-

niques are based on the estimated speech spectrum. In radar and sonar signal processing

the location of the sources are present in the spectral contents of the signal received. Also

it is used in various medical examinations, like the electroencephalogram (EEG) signals

measured from patients which are spectrally analyzed to check for any symptoms.

2 Spectral Estimation

Intuitively, a spectrum of a signal can be thought of pieces of di�erent frequencies arran-

ged on a frequency scale. In order to determine the power of the spectral content, the

signal can be passed through a set of bandpass �lters of desired bandwidth ∆(ejΩ) and
divided by the bandwidth to obtain an estimated power of the spectral estimate.

Let y(n) be a deterministic discrete-time signal sequence with �nite energy

+∞∑
n=−∞

|y(n)|2 < ∞

then the Energy Spectral Density S(ejΩ) of y(n) is given by

S(ejΩ) = |Y (ejΩ)|2 (1)

where Y (ejΩ) is given by

Y (ejΩ) =

+∞∑
n=−∞

y(n)e−jΩn. (2)

Measured real-world signals are mostly random signals which are one of the many rea-

lizations of the random process from which these signals arise. The previous de�nition

shown in Eq. (2) can't be applied for measured signals, even though they don't change
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after measurement, because they don't hold �nite energy. Random signals are best descri-

bed by their statistical properties like average power, second moment, etc. The spectral

estimates of such signals are called Power Spectral Densities (PSD) given by

ϕ(ejΩ) =
∞∑

k=−∞
r(k)e−jΩk (3)

where r(k) is the autocovariance of the random signal y(n) de�ned as

r(k) = E{y(n) y∗(n− k)}. (4)

A second de�nition of the PSD, which is equivalent to Eq. (3), is given by

S(ejΩ) = lim
N→∞

E

 1

N

∣∣∣∣∣
N−1∑
n=0

y(n)e−jΩn

∣∣∣∣∣
2
 . (5)

2.1 Non-Parametric Estimation

Non-parametric methods for estimating spectra are based on the de�nitions introduced

before. These methods introduced here are generic ways of estimating spectra and are

not dependent on any models or parameters, hence the name non-parametric.

2.1.1 Periodogram Method

By modifying Eq. (5) the measured spectra of a random signal can be obtained. This

method is called Periodogram. The Periodogram is computed by

ϕ̂p(e
jΩ) =

1

N

∣∣∣∣∣
N−1∑
n=0

y(n)e−jΩn

∣∣∣∣∣
2

. (6)

Here the limit and the expectation have been omitted.

2.1.2 Corellogram Method

The correlation based computation of the PSD is called as Corellogram. From Eq. (3)

the Correlogram can be computed by

ϕ̂c(e
jΩ) =

N−1∑
k=−(N−1)

r̂(k)e−jΩk. (7)

An estimate of the covariance can be obtained by

r̂(k) =
1

N − k

N∑
n=k+1

y(n)y∗(n− k) 0 ≤ k ≤ N − 1. (8)
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2.1.3 Blackman-Tuckey Method

To reduce high statistical variability a modi�ed version of the Correllogram was develo-

ped, called Blackman-Tuckey estimator. In this method a window w(k) is applied to the

estimated covariance. The window consits of non-zero values within the window length

M and zeros outside. The window is an even function i.e. w(−k) = w(k) and M < N has

to be ful�lled. It can be applied to the Periodogram by convolving W (ejΩ), the DTFT
of the window, with ϕp(e

jΩ).
The Blackman-Tuckey estimator is obtained by

ϕ̂BT(e
jΩ) =

M−1∑
k=−(M−1)

w(k)r̂(k)e−jΩk. (9)

and

ϕ̂BT(e
jΩ) = ϕ̂p(e

jΩ) ∗W (ejΩ). (10)

Di�erent windows such as the Rectangular, Bartlett, Hann, Hamming can be used cor-

responding to di�erent requirements.

2.1.4 Bartlett Method

One simple idea to reduce the variance in the estimated PSDs is to compute multiple

PSDs from the given data length and average all of them. This is achieved by dividing

the data into smaller segments of length M according to

yi(n) = y(n+ (i− 1)M) for i = 1, ..., L (11)

so that N = L · M where N is the lenght of the measured signal. The Periodogram is

then computed according to

ϕ̂i,p(e
jΩ, i) =

1

M

∣∣∣∣∣
M−1∑
n=0

yi(n)e
−jΩn

∣∣∣∣∣
2

for i = 1, ..., L (12)

and the Bartlett estimate is obtained according to

ϕ̂B(e
jΩ) =

1

L

L∑
i=1

ϕ̂i,p(e
jΩ, i). (13)

2.2 Parametric Estimation

A second approach for estimating the spectra of measured random signals is to compare

the signal with a model. The parameters estimated in the model are used for the esti-

mation of the spectra. When the estimated parameters are close to the real parameters,

the estimated spectra are also more accurate. These methods are in general classi�ed as

parametric estimations.

In parametric modeling the measured signal y(n) is considered as a result from a white

noise input to a system with transfer function H(z). The white noise process is described
by a covariance of σ2

wnδ(k) and a PSD σ2
wn. The transfer function H(z) is de�ned as

H(z) =
b0 + b1z

−1 + · · ·+ bqz
−q

a0 + a1z−1 + · · ·+ apz−p
. (14)
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� Autoregressive process (AR) when q = 0. The �lter is all-pole, recursive.

� Moving Average process (MA) when p = 0. The �lter is all-zero, non-recursive.

� ARMA process when both p, q > 0. The �lter is pole-zero, recursive.

The parameters that need to be estimated are the ai for AR processes, bj for MA processes

and both ai, bj for ARMA processes. The PSD of y(n) is then given by

ϕ(ejΩ) = |H(ejΩ)|2ϕwn(ejΩ) =
∣∣∣∣ b0 + b1z

−1 + · · ·+ bqz
−q

a0 + a1z−1 + · · ·+ apz−p

∣∣∣∣2 σ2
wn. (15)

The parametric estimation is widely used in the analysis of speech signals. A simple

all-pole �lter can be assumed to describe the behavior of the vocal tract. Speech signals

can be roughly divided into voiced and unvoiced segments. Unvoiced segments are those

which are random noise alike and voiced segments are those which are passed through a

glottal pulse �lter G(z). The vocal tract �lter can be modeled as

H(ejΩ) =
1

1 +
p∑

i=1
aie−jΩi

(16)

where p is the number of poles.

3 Lab Preparation

(a) Describe spectrum estimation in a few words .

(b) What is the di�erence between Energy Spectral Density and Power Spectral Den-

sity?

(c) What is Non-Parametric estimation?

(d) What is Parametric estimation?

(e) List out the properties of speech signals.

4 Lab Execution

4.1 Periodogram and Corellogram

1. Realize a function called periodg1 which computes an estimate of the PSD based

on Eq. (6).

2. Load data from p1.mat. Use the created function to estimate the PSD of the data.

3. Realize a function called correlg1 which computes an estimate of the PSD based

on Eq. (7).

4. Now use this function to compute the PSD of the above data.

5. Plot the two computed PSDs.

6. Repeat the above steps for p2.mat and p3.mat.

7. Plot all the estimations (using subplot).
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4.2 Blackmann-Tuckey and Bartlett Estimation

1. Realize a function called blackman1 which computes an estimate of the PSD based

on Eq. (10). You could use periodg1 as a template.

2. Load data from p1.mat. Use the created function to estimate the PSD of the data.

3. Change the window from rectangular to Barlett, Hann and Hamming.

4. Come up with a data sequence which would return the spectrum of the window

used as PSD.

5. Plot the above spectrum for all windows stated above.

6. Realize a function called bartlett1 which computes an estimate of the PSD based

on Eq. (13).

7. Load data from p1.mat. Use the created function above to estimate the PSD of the

data.

8. Try the computations for p2.mat and p3.mat.

9. Plot all the estimations (using subplot).

4.3 Speech Signal Analysis

1. Load the data s1.mat and s2.mat.

2. Model the vocal tract with an AR process of order 10 using the aryule function.

3. Compute and plot the PSDs for both data sets.

4. Try other values of the AR process order and plot the corresponding PSDs.

5. Based on the plots, is it possible to determine voiced or unvoiced speech segments?
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