

Adaptive Filters – Linear Prediction

Gerhard Schmidt

Christian-Albrechts-Universität zu Kiel Faculty of Engineering Institute of Electrical and Information Engineering Digital Signal Processing and System Theory

Christian-Albrechts-Universität zu Kiel

Today

Contents of the Lecture:

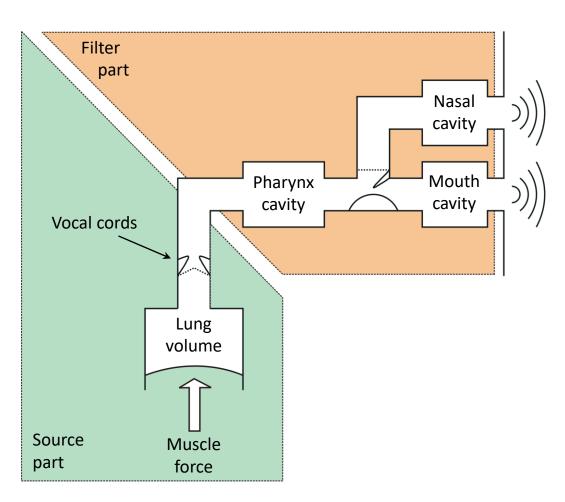
- □ Source-filter model for speech generation
- Literature
- Derivation of linear prediction
- Levinson-Durbin recursion
- Application example

□ Source-filter model for speech generation

- **Literature**
- Derivation of linear prediction
- **Levinson-Durbin recursion**
- Application example

Motivation

Speech Production

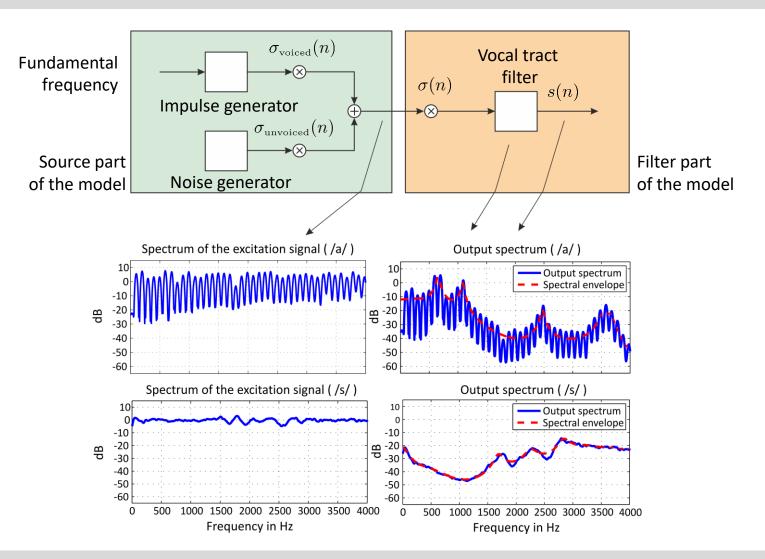


Principle:

- An airflow, coming from the lungs, excites the vocal cords for voiced excitation or causes a noise-like signal (opened vocal cords).
- The mouth, nasal, and pharynx cavity are behaving like controllable resonators and only a few frequencies (called formant frequencies) are not attenuated.

Motivation

Source-filter Model



Source-filter model for speech generation

Literature

Derivation of linear prediction

- **Levinson-Durbin recursion**
- **Application example**

Books

Basic text:

E. Hänsler / G. Schmidt: Acoustic Echo and Noise Control – Chapter 6 (Linear Prediction), Wiley, 2004

Speech processing:

- P. Vary, R. Martin: Digital Transmission of Speech Signals Chapter 2 (Models of Speech Production and Hearing), Wiley 2006
- □ J. R. Deller, J. H. I. Hansen, J. G. Proakis: Discrete-Time Processing of Speech Signals Chapter 3 (Modeling Speech Production), IEEE Press, 2000

Further basics:

- E. Hänsler: Statistische Signale: Grundlagen und Anwendungen Chapter 6 (Linearer Prädiktor), Springer, 2001 (in German)
- M. S. Hayes: Statistical Digital Signal Processing and Modeling Chapters 4 und 5 (Signal Modeling, The Levinson Recursion), Wiley, 1996

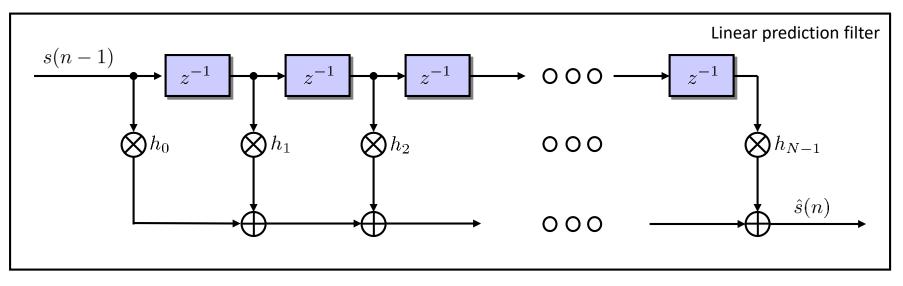
Source-filter model for speech generation Literature Derivation of linear prediction Levinson-Durbin recursion

• Application example

Basic Approach

Estimation of the current signal sample on the basis of the previous N samples:

$$\hat{s}(n) = \sum_{i=0}^{N-1} h_i \, s(n-1-i).$$



With:

 \square $\hat{s}(n)$: estimation of s(n)

 \square N: length / order of the predictor

 \Box h_i : predictor coefficients

Digital Signal Processing and System Theory | Adaptive Filters | Linear Prediction

CAU

Optimization Criterion

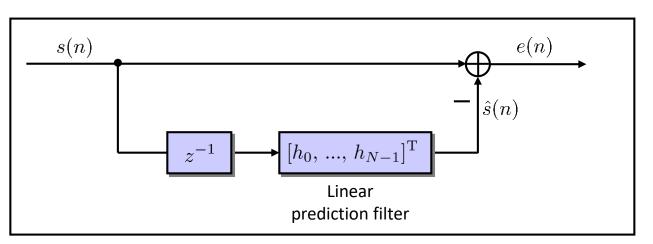
Optimization:

Estimation of the filter coefficients h_i such that a cost function is optimized.

Cost function:

$$\mathrm{E}\left\{\left[\underbrace{s(n) - \hat{s}(n)}_{e(n)}\right]^2\right\} \to \min$$

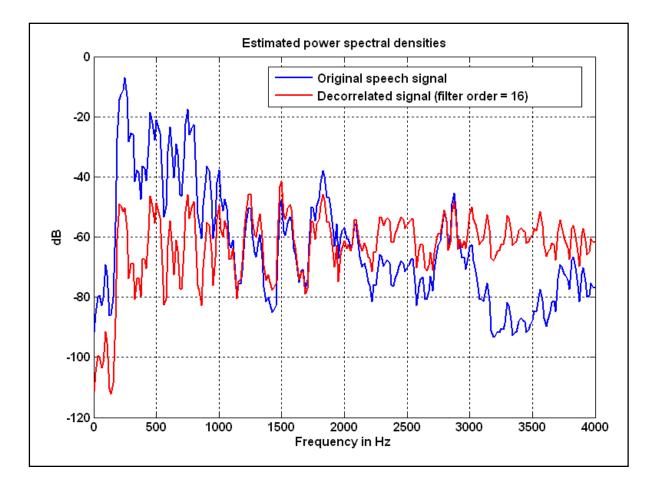
Structure:



Cost function:

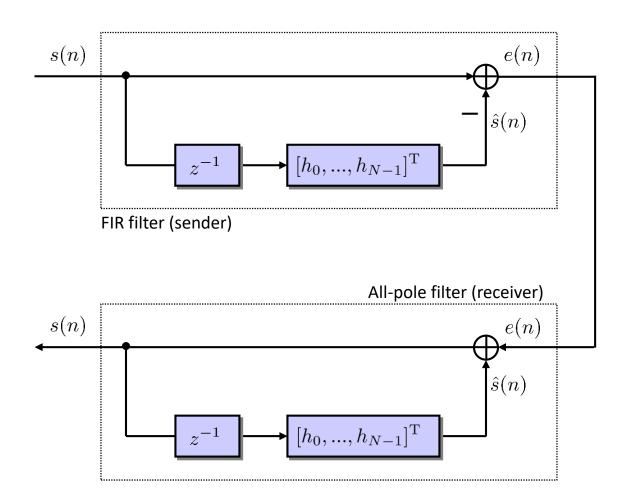
 $\mathrm{E}\left\{e^{2}(n)\right\} \rightarrow \min$

- Strong frequency components will be attenuated most (due to Parseval).
- This leads to a spectral "decoloring" (whitening) of the signal.



CIAU

Inverse Filter Structure



Properties:

- □ The inverse predictor error filter is an all-pole filter
- The cascaded structure consisting of a predictor error filter and an inverse predictor error filter - can be used for lossless data compression and for sending and receiving signals.

CAU

Christian-Albrechts-Universität zu Kiel

Computing the Filter Coefficients

Derivation during the lecture ...

Examples – Part 1

First example:

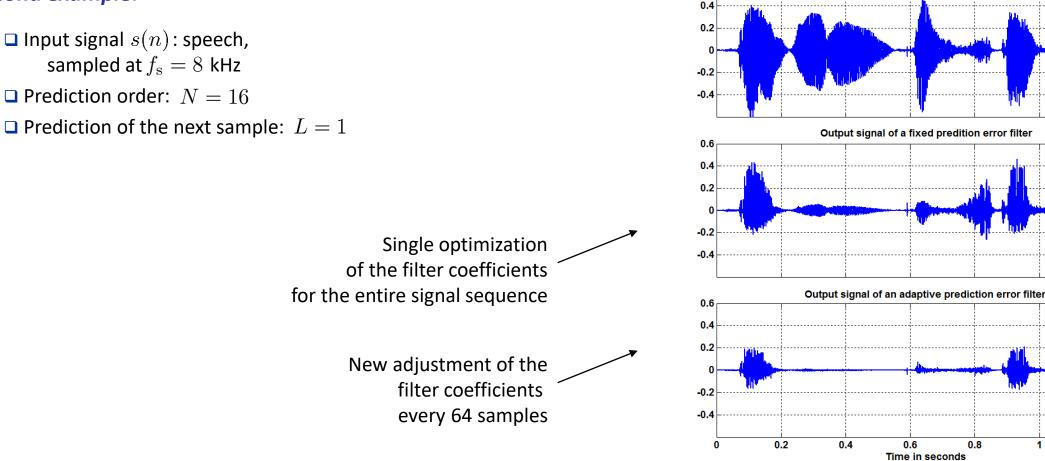
- \Box Input signal s(n): white noise with variance σ_0^2 (zero mean)
- \Box Prediction order: N = 3
- \Box Prediction of the next sample: L = 1

This leads to:

$$\begin{split} \boldsymbol{R}_{ss} &= \begin{bmatrix} \sigma_0^2 & 0 & 0 \\ 0 & \sigma_0^2 & 0 \\ 0 & 0 & \sigma_0^2 \end{bmatrix}, \text{respectively } \boldsymbol{R}_{ss}^{-1} &= \frac{1}{\sigma_0^2} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ \boldsymbol{r}_{ss}(1) &= \begin{bmatrix} 0, 0, 0 \end{bmatrix}^{\mathrm{T}} \\ \boldsymbol{h} &= \boldsymbol{R}_{ss}^{-1} \boldsymbol{r}_{ss}(1) = \begin{bmatrix} 0, 0, 0 \end{bmatrix}^{\mathrm{T}}, \text{ what means the no prediction is possible or - to be precise - the best prediction is the mean of the input signal which is zero.} \end{split}$$

Examples – Part 2

Second example:



Input signal (speech)

0.6

1.2

Estimation of the Autocorrelation Function – Part 1

Problem:

Ensemble averages are usually not known in most applications.

Solution:

Estimation of the ensemble averages by temporal averaging (ergodicity assumed):

$$\mathbf{E}\left\{s(n)\,s(n+l)\right\} \longrightarrow \frac{1}{L}\sum_{n}s(n)\,s(n+l)$$

Assumption:

s(n) is a representative signal of the underlying random process.

Estimation schemes:

A few schemes for estimating an autocorrelation function exist. These scheme differ in the properties (such as unbiasedness or positive definiteness) that the resulting autocorrelation gets significantly.

Estimation of the Autocorrelation Function – Part 2

Example: "Autocorrelation method":

Computed according to:

$$\widehat{r}_{ss}(l) = \begin{cases} \frac{1}{L} \sum_{n=0}^{L-1-l} s(n) \, s(n+l), & \text{for } l \ge 0, \\ \\ \frac{1}{L} \sum_{n=l}^{L-1} s(n) \, s(n+l), & \text{for } l < 0 \end{cases}$$

Properties:

 \Box The estimation is biased, we achieve: $\left| \mathbb{E} \left\{ \widehat{r}_{ss}(l) \right\} \right| \leq \left| r_{ss}(l) \right|$

But we obtain:

$$\hat{r}_{ss}(l) = 0, \text{ for } |l| > L$$
$$\hat{r}_{ss}(l) = \hat{r}_{ss}(-l)$$
$$|\hat{r}_{ss}(l)| \leq \hat{r}_{ss}(0)$$

□ The resulting (estimated) autocorrelation matrix is positive definite.

□ The resulting (estimated) autocorrelation matrix has Toeplitz structure.

Levinson-Durbin Recursion – Part 1

Problem:

The solution of the equation system

 $\boldsymbol{R}_{ss} \, \boldsymbol{h}_{ ext{opt}} \; = \; \boldsymbol{r}_{ss}(L)$

has – depending on how the autocorrelation matrix R_{ss} is estimated – a complexity proportional to N^2 or N^3 , respectively. In addition numerical problems can occur if the matrix is ill-conditioned.

Goal:

A robust solution method that avoids direct inversion of the matrix $oldsymbol{R}_{ss}$.

Solution

Exploiting the Toeplitz structure of the matrix $oldsymbol{R}_{ss}$:

Recursion over the filter order

Combining forward and backward prediction

Literature:

J. Durbin: The Fitting of Time Series Models, Rev. Int. Stat. Inst., no. 28, pp. 233 - 244, 1960

N. Levinson: The Wiener RMS Error Criterion in Filter Design and Prediction, J. Math. Phys., no. 25, pp. 261 - 268, 1947

Source-filter model for speech generation
Literature
Derivation of linear prediction
Levinson-Durbin recursion

• Application example

Equation system of the forward prediction:

Levinson-Durbin Recursion – Part 3 (Backward Prediction)

After rearranging the equations:

$$r(N) = h_0 r(N-1) + h_1 r(N-2) + \dots + h_{N-1} r(0)$$

$$r(N-1) = h_0 r(N-2) + h_1 r(N-3) + \dots + h_{N-1} r(1)$$

$$r(N-2) = h_0 r(N-3) + h_1 r(N-4) + \dots + h_{N-1} r(2)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$r(1) = h_0 r(0) + h_1 r(1) + \dots + h_{N-1} r(N-1)$$
for $h_i = h_{opt,i}$

$$r(N) = h_{N-1} r(0) + h_{N-2} r(1) + \dots + h_0 r(N-1)$$

$$r(N-1) = h_{N-1} r(1) + h_{N-2} r(0) + \dots + h_0 r(N-2)$$

$$r(N-2) = h_{N-1} r(2) + h_{N-2} r(1) + \dots + h_0 r(N-3)$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$r(1) = h_{N-1} r(N-1) + h_{N-2} r(N-2) + \dots + h_0 r(N-3)$$

for $h_i = h_{\text{opt},i}$

Levinson-Durbin Recursion – Part 4 (Backward Prediction)

After changing the order of the elements on the right side:

for $h_i = h_{\text{opt},i}$

Matrix-vector notation:

$$\underbrace{ \begin{bmatrix} r(N) \\ r(N-1) \\ \vdots \\ r(1) \end{bmatrix} }_{\tilde{\boldsymbol{r}}_{ss}(1)} = \underbrace{ \begin{bmatrix} r(0) & r(1) & \dots & r(N-1) \\ r(1) & r(0) & \dots & r(N-2) \\ \vdots & \vdots & \ddots & \vdots \\ r(N-1) & r(N-2) & \dots & r(0) \end{bmatrix} \underbrace{ \begin{bmatrix} h_{\text{opt},N-1} \\ h_{\text{opt},N-2} \\ \vdots \\ h_{\text{opt},0} \end{bmatrix} }_{\tilde{\boldsymbol{h}}_{\text{opt}}}$$

Levinson-Durbin Recursion – Part 5 (Backward Prediction)

Matrix-vector notation:

$$\tilde{\boldsymbol{r}}_{ss}(1) = \boldsymbol{R}_{ss} \tilde{\boldsymbol{h}}_{opt}$$

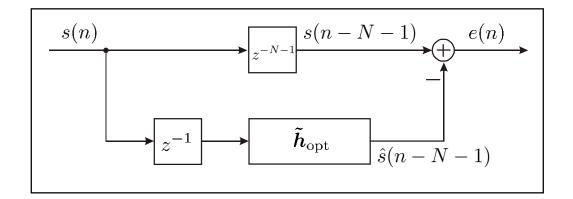
Due to symmetry of the autocorrelation function:

$$\tilde{\boldsymbol{r}}_{ss}(1) = \begin{bmatrix} r(N), r(N-1), ..., r(1) \end{bmatrix}^{\mathrm{T}} \\ \dots & \text{inserting } r(l) = r(-l) \\ = \begin{bmatrix} r(-N), r(-N+1), ..., r(-1) \end{bmatrix}^{\mathrm{T}} \\ = \boldsymbol{r}_{ss}(-N)$$

Backward prediction by N samples:

$$egin{array}{rl} ilde{m{r}}_{ss}(1) &=& m{R}_{ss}\, ilde{m{h}}_{
m opt} \ m{r}_{ss}(-N) &=& m{R}_{ss}\, ilde{m{h}}_{
m opt} \end{array}$$

$$ilde{oldsymbol{h}}_{ ext{opt}} \;=\; oldsymbol{R}_{ss}^{-1}\,oldsymbol{r}_{ss}(-N)$$



Levinson-Durbin Recursion – Part 6 (Derivation of the Recursion)

Derivation during the lecture ...

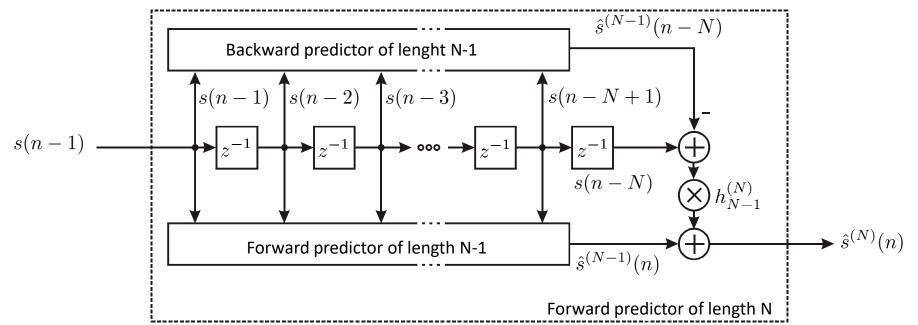
Levinson-Durbin Recursion – Part 7 (Basic Structure of Recursive Algorithms)

Estimated signal using a prediction filter of length N:

$$\hat{s}^{(N)}(n) = \sum_{i=0}^{N-1} h_i^{(N)} s(n-1-i) = \sum_{i=0}^{N-2} h_i^{(N)} s(n-1-i) + h_{N-1}^{(N)} s(n-N)$$

$$\begin{aligned} \text{Inserting the recursion} \quad h_i^{(N)} &= h_i^{(N-1)} - h_{N-1}^{(N)} h_{N-2-i}^{(N-1)} : \\ \hat{s}^{(N)}(n) &= \sum_{i=0}^{N-2} \left(h_i^{(N-1)} - h_{N-1}^{(N)} h_{N-2-i}^{(N-1)} \right) s(n-1-i) + h_{N-1}^{(N)} s(n-N) \\ &= \sum_{i=0}^{N-2} h_i^{(N-1)} s(n-1-i) - h_{N-1}^{(N)} \sum_{i=0}^{N-2} h_{N-2-i}^{(N-1)} s(n-1-i) + h_{N-1}^{(N)} s(n-N) \\ &= \underbrace{\sum_{i=0}^{N-2} h_i^{(N-1)} s(n-1-i)}_{i=0} + h_{N-1}^{(N)} \left(\underbrace{s(n-N) - \sum_{i=0}^{N-2} h_{N-2-i}^{(N-1)} s(n-1-i)}_{i=0} \right) \\ &= \underbrace{\sum_{i=0}^{N-2} h_i^{(N-1)} s(n-1-i)}_{\text{Forward predictor}} + h_{N-1}^{(N)} \left(\underbrace{s(n-N) - \sum_{i=0}^{N-2} h_{N-2-i}^{(N-1)} s(n-1-i)}_{i=0} \right) \\ &= \underbrace{\sum_{i=0}^{N-2} h_i^{(N-1)} s(n-1-i)}_{\text{Forward predictor}} + h_{N-1}^{(N)} \left(\underbrace{s(n-N) - \sum_{i=0}^{N-2} h_{N-2-i}^{(N-1)} s(n-1-i)}_{i=0} \right) \\ &= \underbrace{\sum_{i=0}^{N-2} h_i^{(N-1)} s(n-1-i)}_{\text{Forward predictor}} + h_{N-1}^{(N)} \left(\underbrace{s(n-N) - \sum_{i=0}^{N-2} h_{N-2-i}^{(N-1)} s(n-1-i)}_{i=0} \right) \\ &= \underbrace{\sum_{i=0}^{N-2} h_i^{(N-1)} s(n-1-i)}_{\text{Forward predictor}} + h_{N-1}^{(N)} \left(\underbrace{s(n-N) - \sum_{i=0}^{N-2} h_{N-2-i}^{(N-1)} s(n-1-i)}_{i=0} \right) \\ &= \underbrace{\sum_{i=0}^{N-2} h_i^{(N-1)} s(n-1-i)}_{i=0} + h_{N-1}^{(N)} \left(\underbrace{s(n-N) - \sum_{i=0}^{N-2} h_{N-2-i}^{(N-1)} s(n-1-i)}_{i=0} \right) \\ &= \underbrace{\sum_{i=0}^{N-2} h_i^{(N-1)} s(n-1-i)}_{i=0} + h_{N-1}^{(N)} \left(\underbrace{s(n-N) - \sum_{i=0}^{N-2} h_{N-2-i}^{(N-1)} s(n-1-i)}_{i=0} \right) \\ &= \underbrace{\sum_{i=0}^{N-2} h_i^{(N-1)} s(n-1-i)}_{i=0} + h_{N-1}^{(N)} \left(\underbrace{s(n-N) - \sum_{i=0}^{N-2} h_{N-2-i}^{(N-1)} s(n-1-i)}_{i=0} \right) \\ &= \underbrace{\sum_{i=0}^{N-2} h_i^{(N-1)} s(n-1-i)}_{i=0} + h_{N-1}^{(N)} \left(\underbrace{s(n-N) - \sum_{i=0}^{N-2} h_{N-2-i}^{(N-1)} s(n-1-i)}_{i=0} \right) \\ &= \underbrace{\sum_{i=0}^{N-2} h_i^{(N-1)} s(n-1-i)}_{i=0} + h_{N-1}^{(N)} \left(\underbrace{s(n-N) - \sum_{i=0}^{N-2} h_{N-2-i}^{(N-1)} s(n-1-i)}_{i=0} \right) \\ &= \underbrace{\sum_{i=0}^{N-2} h_{N-1}^{(N-1)} s(n-1-i)}_{i=0} + h_{N-1}^{(N-1)} \left(\underbrace{s(n-N) - \sum_{i=0}^{N-2} h_{N-2-i}^{(N-1)} s(n-1-i)}_{i=0} \right) \\ &= \underbrace{\sum_{i=0}^{N-2} h_{N-1}^{(N-1)} s(n-1-i)}_{i=0} + h_{N-1}^{(N-1)} \left(\underbrace{s(n-N) - \sum_{i=0}^{N-2} h_{N-2-i}^{(N-1)} s(n-1-i)}_{i=0} \right) \\ &= \underbrace{\sum_{i=0}^{N-2} h_{N-1}^{(N-1)} s(n-1-i)}_{i=0} + h_{N-1}^{(N-1)} \left(\underbrace$$

Levinson-Durbin Recursion – Part 8 (Basic Structure of Recursive Algorithms)



Structure that shows the recursion over the order:

In short form:

$$\hat{s}^{(N)}(n) = \hat{s}^{(N-1)}(n) + h_{N-1}^{(N)} \left(s(n-N) - \hat{s}^{(N-1)}(n-N) \right)$$

*New estimation = old estimation + weighting * (new sample – estimated new sample)*

Levinson-Durbin Recursion – Part 9 (Recursive Computation of the Error Power)

Minimal error power:

$$E\{e^{2}(n)\}\Big|_{\min} = E\left\{\left(s(n) - \sum_{j=0}^{N-1} h_{\text{opt},j} s(n-1-j)\right)^{2}\right\}$$

= $r(0) - 2 \sum_{j=0}^{N-1} h_{\text{opt},j} r(j+1) + \sum_{j=0}^{N-1} \sum_{i=0}^{N-1} h_{\text{opt},i} r(i-j)$
= $r(0) - 2 h_{\text{opt}}^{\text{T}} r_{ss}(1) + h_{\text{opt}}^{\text{T}} R_{ss} h_{\text{opt}}$

$$\begin{aligned} \mathbf{P}_{nserting} \ \mathbf{h}_{opt} &= \mathbf{R}_{ss}^{-1} \ \mathbf{r}_{ss}(1) : \\ & \mathrm{E} \{ e^{2}(n) \} \Big|_{\min} \ = \ r(0) - 2 \ \mathbf{h}_{opt}^{\mathrm{T}} \ \mathbf{r}_{ss}(1) + \mathbf{h}_{opt}^{\mathrm{T}} \ \mathbf{R}_{ss} \ \mathbf{R}_{ss}^{-1} \ \mathbf{r}_{ss}(1) \\ &= \ r(0) - \mathbf{h}_{opt}^{\mathrm{T}} \ \mathbf{r}_{ss}(1) \end{aligned}$$

Order-recursive notation:

$$E_{\min}^{(N)} = r(0) - \left(\boldsymbol{h}_{opt}^{(N)}\right)^{T} \boldsymbol{r}_{ss}^{(N)}(1)$$

= $r(0) - r(N) h_{N-1}^{(N)} - \left[h_{0}^{(N)}, ..., h_{N-2}^{(N)}\right] \boldsymbol{r}_{ss}^{(N-1)}(1)$

C A U Christian-Albrechts-Universität zu Kiel

Levinson-Durbin Recursion – Part 10 (Recursive Computation of the Error Power)

Minimal error power:

$$E_{\min}^{(N)} = r(0) - r(N) h_{N-1}^{(N)} - \left[h_0^{(N)}, ..., h_{N-2}^{(N)} \right] \boldsymbol{r}_{ss}^{(N-1)}(1)$$

Inserting the Levinson recursion:

$$E_{\min}^{(N)} = r(0) - r(N) h_{N-1}^{(N)} - \left(\boldsymbol{h}_{opt}^{(N-1)} - \boldsymbol{h}_{N-1}^{(N)} \, \tilde{\boldsymbol{h}}_{opt}^{(N-1)} \right)^{\mathrm{T}} \boldsymbol{r}_{ss}^{(N-1)}(1) = r(0) - \left(\boldsymbol{h}_{opt}^{(N-1)} \right)^{\mathrm{T}} \boldsymbol{r}_{ss}^{(N-1)}(1) - h_{N-1}^{(N)} \left(r(N) - \left(\tilde{\boldsymbol{h}}_{opt}^{(N-1)} \right)^{\mathrm{T}} \boldsymbol{r}_{ss}^{(N-1)}(1) \right) = E_{\min}^{(N-1)} - h_{N-1}^{(N)} \underbrace{ \left(r(N) - \left(\tilde{\boldsymbol{h}}_{opt}^{(N-1)} \right)^{\mathrm{T}} \boldsymbol{r}_{ss}^{(N-1)}(1) \right) }_{(1)}$$

Levinson-Durbin Recursion – Part 11 (Recursive Computation of the Error Power)

Recursion of the refection coefficient:

$$\hat{h}_{N-1}^{(N)} = \frac{r(N) - \left(\tilde{\boldsymbol{r}}_{ss}^{(N-1)}(1)\right)^{\mathrm{T}} \boldsymbol{h}_{\mathrm{opt}}^{(N-1)}}{r(0) - \left(\tilde{\boldsymbol{h}}_{\mathrm{opt}}^{(N-1)}\right)^{\mathrm{T}} \tilde{\boldsymbol{r}}_{ss}^{(N-1)}(1)}$$

Transpose numerator and denominator, mirror all vectors

$$= \frac{r(N) - \left(\tilde{\boldsymbol{h}}_{opt}^{(N-1)}\right)^{T} \boldsymbol{r}_{ss}^{(N-1)}(1)}{r(0) - \left(\boldsymbol{h}_{opt}^{(N-1)}\right)^{T} \boldsymbol{r}_{ss}^{(N-1)}(1)} \\ = \frac{r(N) - \left(\tilde{\boldsymbol{h}}_{opt}^{(N-1)}\right)^{T} \boldsymbol{r}_{ss}^{(N-1)}(1)}{E_{\min}^{(N-1)}}$$

Rearranging:

$$\underbrace{h_{N-1}^{(N)} E_{\min}^{(N-1)}}_{(2)} = r(N) - \left(\tilde{\boldsymbol{h}}_{opt}^{(N-1)}\right)^{\mathrm{T}} \boldsymbol{r}_{ss}^{(N-1)}(1)$$

Levinson-Durbin Recursion – Part 12 (Recursive Computation of the Error Power)

Previous results:

$$E_{\min}^{(N)} = E_{\min}^{(N-1)} - h_{N-1}^{(N)} \underbrace{\left(r(N) - \left(\tilde{\boldsymbol{h}}_{opt}^{(N-1)}\right)^{\mathrm{T}} \boldsymbol{r}_{ss}^{(N-1)}(1)\right)}_{(1)}$$

$$\underbrace{h_{N-1}^{(N)} E_{\min}^{(N-1)}}_{(2)} = r(N) - \left(\tilde{\boldsymbol{h}}_{opt}^{(N-1)}\right)^{\mathrm{T}} \boldsymbol{r}_{ss}^{(N-1)}(1)$$

Inserting (2) in (1):

$$E_{\min}^{(N)} = E_{\min}^{(N-1)} \left(1 - \left(h_{N-1}^{(N)} \right)^2 \right)$$

Remarks:

- **\Box** Start of the recursion: $E_{\min}^{(0)} = r(0)$
- The error power should not increase when increasing the filter order. For that reason the error power is a suitable quantity for checking if the recursion should terminated due to rounding errors, etc.

Levinson-Durbin Recursion – Part 13 (Summary)

Initialization

Predictor:	$h_0^{(1)} \;=\; ilde{h}_0^{(1)} \;=\; r(1)/r(0)$
Error power (optional):	$E_{ m min}^{(0)} \;=\; r(0)$
Recursion: Reflection coefficient:	$h_{N-1}^{(N)} = \frac{r(N) - \left[\tilde{\boldsymbol{r}}_{ss}^{(N-1)}(1)\right]^{\mathrm{T}} \boldsymbol{h}_{\mathrm{opt}}^{(N-1)}}{r(0) - \left[\tilde{\boldsymbol{r}}_{ss}^{(N-1)}(1)\right]^{\mathrm{T}} \tilde{\boldsymbol{h}}_{\mathrm{opt}}^{(N-1)}}$
Forward predictor:	$\begin{bmatrix} h_0^{(N)}, h_1^{(N)},, h_{N-2}^{(N)} \end{bmatrix}^{\mathrm{T}} = \boldsymbol{h}_{\mathrm{opt}}^{(N-1)} - h_{N-1}^{(N)} \boldsymbol{\tilde{h}}_{\mathrm{opt}}^{(N-1)}$
Backward predictor:	$ ilde{h}_{i}^{(N)} \;=\; h_{N-i-1}^{(N)}$

□ Error power (optional):

Condition for termination:

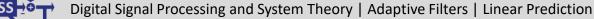
□ Numerical problems:

• Order:

If $(h_{N-1}^{(N)})^2 > 1 - \varepsilon$ is true, use the coefficients of the previous recursion and fill the missing coefficients with zeros.

If the desired filter order is reached, stop the recursion.

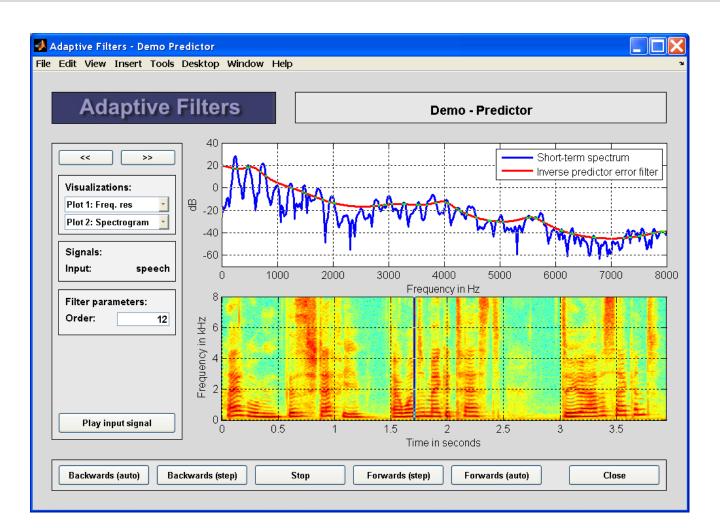
 $E_{\min}^{(N)} = E_{\min}^{(N-1)} \left[1 - \left(h_{N-1}^{(N)} \right)^2 \right]$



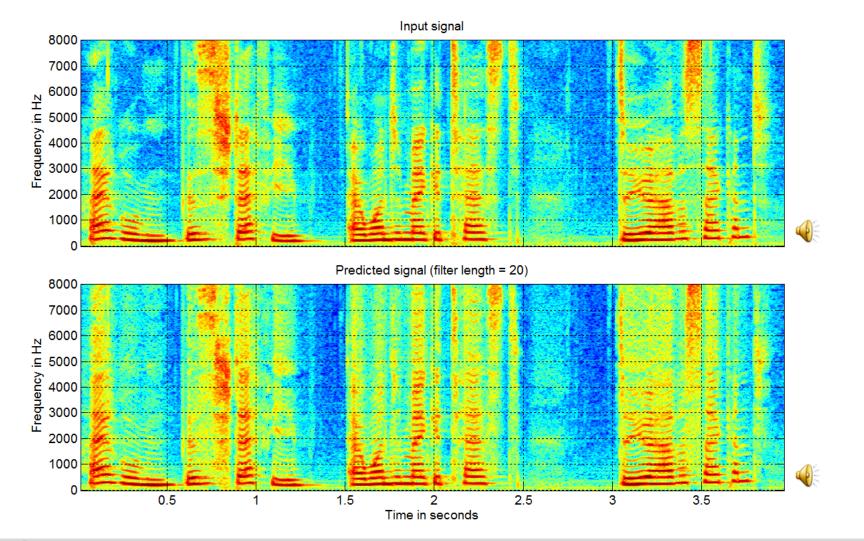
Source-filter model for speech generation Literature Derivation of linear prediction

Levinson-Durbin recursion

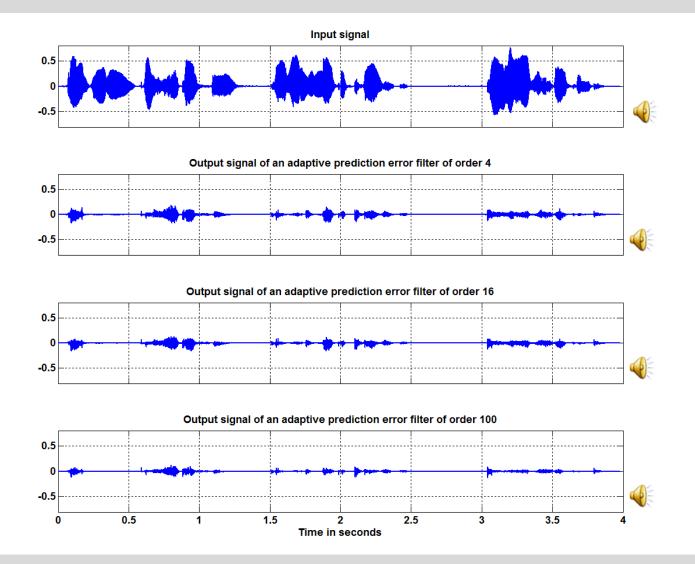
Application example



Matlab Demo – Input Signal and Estimated Signal



Matlab Demo – Error Signals



Summary and Outlook

This week:

- □ Source-filter model for speech generation
- Derivation of linear prediction
- Levinson-Durbin recursion
- □ Application example

Next week:

□ Adaptation algorithms – part 1

