

# Adaptive Filters – Algorithms (Part 2)

### **Gerhard Schmidt**

Christian-Albrechts-Universität zu Kiel Faculty of Engineering Institute of Electrical and Information Engineering Digital Signal Processing and System Theory



Christian-Albrechts-Universität zu Kiel

### Today

### Adaptive Algorithms:

Introductory Remarks

- □ Recursive Least Squares (RLS) Algorithm
- □ Least Mean Square Algorithm (LMS Algorithm) Part 1

### □ Least Mean Square Algorithm (LMS Algorithm) – Part 2

- □ Affine Projection Algorithm (AP Algorithm)
- □ Fast Affine Projection Algorithm (FAP Algorithm)







### Geometrical Explanation of Convergence – Part 1

### Structure:



System:

$$oldsymbol{h} = egin{bmatrix} h_0, \, h_1, \, ..., \, h_{N-1} \end{bmatrix}^{\mathrm{T}}$$

**System output:** 
$$d(n) = \sum_{i=0}^{N-1} h_i x(n-i) = h^T x(n) = x^T(n) h$$



### Least Mean Square (LMS) Algorithm



### Geometrical Explanation of Convergence – Part 2

Error signal:

$$e(n) = d(n) - \widehat{d}(n)$$
  
=  $\mathbf{h}^{\mathrm{T}} \mathbf{x}(n) - \widehat{\mathbf{h}}^{\mathrm{T}}(n) \mathbf{x}(n) = \left[\mathbf{h} - \widehat{\mathbf{h}}(n)\right]^{\mathrm{T}} \mathbf{x}(n)$   
=  $\mathbf{h}_{\Delta}^{\mathrm{T}}(n) \mathbf{x}(n) = \mathbf{x}^{\mathrm{T}}(n) \mathbf{h}_{\Delta}(n)$ 

**Difference vector:** 

$$\boldsymbol{h}_{\Delta}(n) = \boldsymbol{h} - \widehat{\boldsymbol{h}}(n)$$

LMS algorithm:

$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu e(n) \boldsymbol{x}(n)$$

$$= \widehat{\boldsymbol{h}}(n) + \mu \boldsymbol{x}(n) \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{h}_{\Delta}(n)$$

$$\underbrace{\widehat{\boldsymbol{h}}(n+1) - \boldsymbol{h}}_{-\boldsymbol{h}_{\Delta}(n+1)} = \underbrace{\widehat{\boldsymbol{h}}(n) - \boldsymbol{h}}_{-\boldsymbol{h}_{\Delta}(n)} + \mu \boldsymbol{x}(n) \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{h}_{\Delta}(n)$$

$$\boldsymbol{h}_{\Delta}(n+1) = \boldsymbol{h}_{\Delta}(n) - \mu \boldsymbol{x}(n) \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{h}_{\Delta}(n)$$

$$= \left[ \mathbf{1} - \mu \boldsymbol{x}(n) \boldsymbol{x}^{\mathrm{T}}(n) \right] \boldsymbol{h}_{\Delta}(n)$$



C A U Christian-Albrechts-Universität zu Kiel

Geometrical Explanation of Convergence – Part 3

The vector  $h_{\Delta}(n)$  will be split into *two components*:

$$\boldsymbol{h}_{\Delta}(n) = \boldsymbol{h}_{\Delta}^{\parallel}(n) + \boldsymbol{h}_{\Delta}^{\perp}(n)$$

It applies to *parallel components*:

$$\boldsymbol{h}_{\Delta}^{\parallel}(n) = r(n) \boldsymbol{x}(n)$$



With:

$$r(n) = rac{oldsymbol{x}^{\mathrm{T}}(n) oldsymbol{h}_{\Delta}(n)}{\left\|oldsymbol{x}(n)
ight\|^2}$$

$$\|\boldsymbol{x}(n)\|^2 = \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{x}(n) = \sum_{l=0}^{N-1} x^2(n-l)$$

$$\boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{h}_{\Delta}(n) = \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{h}_{\Delta}^{\parallel}(n) = \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{x}(n) r(n)$$





Geometrical Explanation of Convergence – Part 4

### Contraction of the system error vector:

 $\begin{aligned} & \text{... result obtained two slides before ...} \\ & \boldsymbol{h}_{\Delta}(n+1) &= \begin{bmatrix} \mathbf{1} - \mu \, \boldsymbol{x}(n) \, \boldsymbol{x}^{\mathrm{T}}(n) \end{bmatrix} \, \boldsymbol{h}_{\Delta}(n) \\ & \text{... splitting the system error vector ...} \\ &= \begin{bmatrix} \mathbf{1} - \mu \, \boldsymbol{x}(n) \, \boldsymbol{x}^{\mathrm{T}}(n) \end{bmatrix} \begin{bmatrix} \boldsymbol{h}_{\Delta}^{\parallel}(n) + \boldsymbol{h}_{\Delta}^{\perp}(n) \end{bmatrix} \\ & \text{... using } \boldsymbol{h}_{\Delta}^{\parallel}(n) = r(n) \, \boldsymbol{x}(n) \text{ and that } \boldsymbol{h}_{\Delta}^{\perp}(n) \text{ is orthogonal to } \boldsymbol{x}(n) \text{ ...} \\ &= \begin{bmatrix} 1 - \mu \| \boldsymbol{x}(n) \|^2 \end{bmatrix} \boldsymbol{h}_{\Delta}^{\parallel}(n) + \boldsymbol{h}_{\Delta}^{\perp}(n) \end{aligned}$ 

... this results in ...

Convergence if  $\left|1-\mu\left\|\boldsymbol{x}(n)\right\|^{2}\right| < 1$  and  $\boldsymbol{h}_{\Delta}^{\parallel}(n) \neq 0$ .





CAU

### NLMS Algorithm – Part 1

LMS algorithm:

$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu e(n) \boldsymbol{x}(n)$$

### Normalized LMS algorithm:

$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu f_{\text{norm}}(\boldsymbol{x}(n)) e(n) \boldsymbol{x}(n)$$





# CAU

### NLMS Algorithm – Part 2

Adaption (in general):  $\widehat{h}(n+1) = \widehat{h}(n) + \Delta \widehat{h}(n)$ 

**A priori error:**  $e(n) = e(n|n) = d(n) - \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{x}(n)$ 

A posteriori error:

$$e(n|n+1) = d(n) - \widehat{\boldsymbol{h}}^{\mathrm{T}}(n+1) \boldsymbol{x}(n)$$
  
=  $d(n) - \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{x}(n) - \boldsymbol{\Delta} \boldsymbol{h}^{\mathrm{T}}(n) \boldsymbol{x}(n)$   
=  $e(n|n) - \boldsymbol{\Delta} \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{x}(n)$ 

A successful adaptation requires

$$\left|e(n|n+1)\right| \leq \left|e(n|n)\right|$$

or:

$$\left[e(n|n+1)\right]^2 \leq \left[e(n|n)\right]^2$$



CAU

### NLMS Algorithm – Part 3

### **Convergence condition:** $[e(n|n+1)]^2 \leq [e(n|n)]^2$

### *Inserting the update equation:*

$$\begin{aligned} \left[ e(n|n+1) \right]^2 &= \left[ e(n|n) - \boldsymbol{\Delta} \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \, \boldsymbol{x}(n) \right] \left[ e(n|n) - \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) \right] \\ &= \left[ e(n|n) \right]^2 - e(n|n) \, \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) \\ &- \boldsymbol{\Delta} \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \, \boldsymbol{x}(n) \, e(n|n) + \, \boldsymbol{\Delta} \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \, \boldsymbol{x}(n) \, \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) \end{aligned}$$

**Condition:** 
$$e(n|n) \mathbf{x}^{\mathrm{T}}(n) \Delta \widehat{\mathbf{h}}(n) + e(n|n) \Delta \widehat{\mathbf{h}}^{\mathrm{T}} \mathbf{x}(n) - \Delta \widehat{\mathbf{h}}^{\mathrm{T}} \mathbf{x}(n) \mathbf{x}^{\mathrm{T}}(n) \Delta \widehat{\mathbf{h}}(n) \ge 0$$

Ansatz:

$$\boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) = \mu e(n|n) \frac{\boldsymbol{M}(n) \boldsymbol{x}(n)}{\boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{M}(n) \boldsymbol{x}(n)}$$

with a real and symmetric matrix  $oldsymbol{M}(n)$ 





### NLMS Algorithm – Part 4

**Condition:** 
$$e(n|n) \mathbf{x}^{\mathrm{T}}(n) \Delta \hat{\mathbf{h}}(n) + e(n|n) \Delta \hat{\mathbf{h}}^{\mathrm{T}}(n) \mathbf{x}(n)$$
  
 $- \Delta \hat{\mathbf{h}}^{\mathrm{T}} \mathbf{x}(n) \mathbf{x}^{\mathrm{T}}(n) \Delta \hat{\mathbf{h}}(n) \ge 0$ 

 $\boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) = \mu e(n|n) \frac{\boldsymbol{M}(n) \boldsymbol{x}(n)}{\boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{M}(n) \boldsymbol{x}(n)}$ Ansatz:

Step size requirement for the NLMS algorithm (after a few lines ...):

 $\mu \ [2 - \mu] > 0$  or  $0 < \mu < 2$ 

For comparison with LMS algorithm:  $0 < \mu < \frac{2}{N \sigma_r^2}$ 





### Least Mean Square (LMS) Algorithm

## CAU

### NLMS Algorithm – Part 5

Ansatz:

$$\Delta \widehat{\boldsymbol{h}}(n) = \mu e(n|n) \frac{\boldsymbol{M}(n) \boldsymbol{x}(n)}{\boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{M}(n) \boldsymbol{x}(n)}$$

In the most simple case M(n) is a unit matrix:

$$\boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) = \mu e(n) \, \frac{\boldsymbol{x}(n)}{\boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{x}(n)}$$

Adaptation rule for the NLMS algorithm:

$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \frac{\mu}{\boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{x}(n)} \, \boldsymbol{x}(n) \, e(n)$$



### Matlab-Demo: Speed of Convergence





### Least Mean Square (LMS) Algorithm



### Convergence Examples – Part 1

### Setup:

White noise: 256N=1 =





Mag-10

20-sct

§ -30 -40

-50 0

500

1000

1500

2000

Frequency

2500

### Least Mean Square (LMS) Algorithm



### Convergence Examples – Part 2

### Setup:





### Today

### Adaptive Algorithms:

- □ Introductory Remarks
- Recursive Least Squares (RLS) Algorithm
- □ Least Mean Square Algorithm (LMS Algorithm) Part 1
- □ Least Mean Square Algorithm (LMS Algorithm) Part 2
- □ Affine Projection Algorithm (AP Algorithm)
- □ Fast Affine Projection Algorithm (FAP Algorithm)



### Basics



Signal vector: Filter vector: Filter output: Signal matrix:

$$\mathbf{x}(n) = \begin{bmatrix} x(n), x(n-1), x(n-2), \dots, x(n-N+1) \end{bmatrix}^{\mathrm{T}}$$

$$\widehat{\mathbf{h}}(n) = \begin{bmatrix} \widehat{\mathbf{h}}_{0}(n), \widehat{\mathbf{h}}_{1}(n), \widehat{\mathbf{h}}_{2}(n), \dots, \widehat{\mathbf{h}}_{N-1}(n) \end{bmatrix}^{\mathrm{T}}$$

$$\widehat{\mathbf{d}}(n) = \widehat{\mathbf{h}}^{\mathrm{T}}(n) \mathbf{x}(n) = \mathbf{x}^{\mathrm{T}}(n) \widehat{\mathbf{h}}(n)$$

$$\mathbf{x}(n) = \begin{bmatrix} \mathbf{x}(n), \mathbf{x}(n-1), \dots, \mathbf{x}(n-L+1) \end{bmatrix}$$

$$L \text{ describes the order of the procedure}$$

### Signal Matrix

### Definition of the signal matrix:



### Error Vector – Part 1

| Signal matrix:             | $\boldsymbol{X}(n) = \left[ \boldsymbol{x}(n),  \boldsymbol{x}(n-1), ,  \boldsymbol{x}(n-L+1) \right]$                                                                                                                                                                                      |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Desired signal vector:     | $\boldsymbol{d}(n) = \left[d(n),  d(n-1), ,  d(n-L+1)\right]^{\mathrm{T}}$                                                                                                                                                                                                                  |
| Filter output vector:      | $\widehat{\boldsymbol{d}}(n) = \left[\widehat{d}(n),  \widehat{d}(n-1), ,  \widehat{d}(n-L+1)\right]^{\mathrm{T}}$                                                                                                                                                                          |
| A priori error vector:     | $\boldsymbol{e}(n n) = \boldsymbol{d}(n) - \widehat{\boldsymbol{d}}(n) = \boldsymbol{d}(n) - \boldsymbol{X}^{\mathrm{T}}(n) \widehat{\boldsymbol{h}}(n)$                                                                                                                                    |
| Adaption rule:             | $\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \boldsymbol{\Delta}\widehat{\boldsymbol{h}}(n)$                                                                                                                                                                              |
| A posteriori error vector: | $e(n n+1) = d(n) - \mathbf{X}^{\mathrm{T}}(n)\widehat{\mathbf{h}}(n+1)$<br>= $d(n) - \mathbf{X}^{\mathrm{T}}(n)\widehat{\mathbf{h}}(n) - \mathbf{X}^{\mathrm{T}}(n)\mathbf{\Delta}\widehat{\mathbf{h}}(n)$<br>= $e(n n) - \mathbf{X}^{\mathrm{T}}(n)\mathbf{\Delta}\widehat{\mathbf{h}}(n)$ |







### Error Vector – Part 2

$$\begin{aligned} \boldsymbol{e}(n|n+1) &= \boldsymbol{d}(n) - \boldsymbol{X}^{\mathrm{T}}(n)\,\widehat{\boldsymbol{h}}(n+1) \\ &= \boldsymbol{d}(n) - \boldsymbol{X}^{\mathrm{T}}(n)\,\widehat{\boldsymbol{h}}(n) - \boldsymbol{X}^{\mathrm{T}}(n)\,\boldsymbol{\Delta}\widehat{\boldsymbol{h}}(n) \\ &= \boldsymbol{e}(n|n) - \boldsymbol{X}^{\mathrm{T}}(n)\,\boldsymbol{\Delta}\widehat{\boldsymbol{h}}(n) \end{aligned}$$

Requirement:

$$\left\|\boldsymbol{e}(n|n+1)\right\| \le \left\|\boldsymbol{e}(n|n)\right\|$$

 $\left\| \boldsymbol{e}(n|n+1) \right\|^2 \le \left\| \boldsymbol{e}(n|n) \right\|^2$ 

$$\begin{aligned} \|\boldsymbol{e}(n|n+1)\|^2 &= \left[\boldsymbol{e}^{\mathrm{T}}(n|n) - \boldsymbol{\Delta}\widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{X}(n)\right] \left[\boldsymbol{e}(n|n) - \boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{\Delta}\widehat{\boldsymbol{h}}(n)\right] \\ &= \left\|\boldsymbol{e}(n|n)\right\|^2 - \boldsymbol{e}^{\mathrm{T}}(n|n) \boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{\Delta}\widehat{\boldsymbol{h}}(n) \\ - \boldsymbol{\Delta}\widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{X}(n) \boldsymbol{e}(n|n) + \boldsymbol{\Delta}\widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{X}(n) \boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{\Delta}\widehat{\boldsymbol{h}}(n) \end{aligned}$$

Requirement:

$$\boldsymbol{e}^{\mathrm{T}}(n|n) \boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) + \boldsymbol{\Delta} \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{X}(n) \boldsymbol{e}^{*}(n|n) \\ - \boldsymbol{\Delta} \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{X}(n) \boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) \geq 0$$





### Ansatz

Requirement:
$$e^{\mathrm{T}}(n|n) \mathbf{X}^{\mathrm{T}}(n) \Delta \widehat{\mathbf{h}}(n) + \Delta \widehat{\mathbf{h}}^{\mathrm{T}}(n) \mathbf{X}(n) e^{*}(n|n)$$
 $- \Delta \widehat{\mathbf{h}}^{\mathrm{T}}(n) \mathbf{X}(n) \mathbf{X}^{\mathrm{T}}(n) \Delta \widehat{\mathbf{h}}(n) \ge 0$ 

Ansatz: 
$$\Delta \hat{h}(n) = \mu M(n) X(n) \left[ X^{\mathrm{T}}(n) M(n) X(n) \right]^{-1}$$

with the symmetric matrix  $oldsymbol{M}(n) = oldsymbol{M}^{\mathrm{T}}(n)$ 

 $\boldsymbol{e}(n|n)$ 

Step-size condition:

$$\mu \, [\, 2 - \mu \,] > 0 \qquad \text{or} \qquad 0 < \mu < 2$$

In the most simple case M(n) is the unit matrix:

$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu \boldsymbol{X}(n) \left[ \boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{X}(n) \right]^{-1} \boldsymbol{e}(n|n)$$



### **Geometrical Interpretation**





### Regularization

Non-regularised version of the AP algorithm:  $\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu \boldsymbol{X}(n) \left[ \boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{X}(n) \right]_{L \times L}^{-1} \boldsymbol{e}(n|n)$ 

### Regularised version of the AP algorithm:

$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu \boldsymbol{X}(n) \left[ \boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{X}(n) + \Delta \boldsymbol{I} \right]_{L \times L}^{-1} \boldsymbol{e}(n|n) ,$$

where  $\Delta$  is a small positive constant.















### Convergence of Different Algorithms – Part 2



N

 $\lambda$ 

=

=



### Summary and Outlook

### This week and last week:

- □ Introductory Remarks
- □ Recursive Least Squares (RLS) Algorithm
- □ Least Mean Square Algorithm (LMS Algorithm) Part 1
- □ Least Mean Square Algorithm (LMS Algorithm) Part 2
- □ Affine Projection Algorithm (AP Algorithm)
- □ Fast Affine Projection Algorithm (FAP Algorithm)

### Next part:

Control of Adaptive Filters





Christian-Albrechts-Universität zu Kiel

#### **Contents:**

### Introduction

- □ Affine projection and NLMS
  - Basic equations
  - □ Convergence speed
  - □ Complexity
- □ From affine projection to fast affine projection
  - □ Fast computation of the error vector
  - □ Fast computation of the coefficient update
  - □ Matrix inversion

### Final remarks



### Introduction

### Fast version of adaptive algorithms:

- Until now we have mainly focused on *direct implementations* of adaptive algorithms.
- Usually, we found that the *more robust* (e.g. in terms on independence on the input statistics) an algorithms is, the *more expensive* (e.g. in terms of multiplications and additions) it is.



![](_page_30_Picture_6.jpeg)

### Introduction

### Fast version of adaptive algorithms:

- Until new we have mainly focused on *direct implementations* of adaptive algorithms.
- Usually, we found that the *more robust* (e.g. in terms on independence on the input statistics) an algorithms is, the *more expensive* (e.g. in terms of multiplications and additions) it is.
- □ Now we will focus on so-called fast versions of algorithms.
- □ These fast versions exist for virtually all algorithms.
- The problem is often, that numerical stability is not easy to achieve.
- We will focus now on a fast version of the fast affine projection algorithm, shorty called FAP.

![](_page_31_Picture_9.jpeg)

![](_page_31_Picture_10.jpeg)

### Introduction

### Fast version of adaptive algorithms:

- □ Invented by Steve(n) L. Grant (AKA Gay) at Bell Labs in 1995.
- □ A very interesting algorithm, since it combines RLS-like speed for colored signals with LMS-like complexity.
- Steve was (unfortunately, he died a couple of years ago) a very nice guy, and the upcoming slides are dedicated to him: "To Steve, a great, clever and smart researcher with a big friendly heart".

![](_page_32_Picture_6.jpeg)

Steven L. Grant (AKA Gay, together with his wife Maria), picture made at ICASSP Brisbane, 2015 [Photo G. Elko]

![](_page_32_Picture_8.jpeg)

### Contents:

### Introduction

- □ Affine projection and NLMS
  - Basic equations
  - Convergence speed
  - Complexity
- □ From affine projection to fast affine projection
  - □ Fast computation of the error vector
  - □ Fast computation of the coefficient update
  - Matrix inversion

□ Final remarks

![](_page_33_Picture_14.jpeg)

Steven L. Grant (AKA Gay, together with Peter Eneroth [left], Tomas Gänsler [third] and Jacob Benesty [right]), picture made at ICASSP Seattle, 1998 [Photo Maria Grant]

![](_page_33_Picture_16.jpeg)

### NLMS versus Affine Projection

#### **Basic NLMS equations:**

• Computation of the *error* signal

$$e(n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$$

□ *Norm* of the excitation vector

$$\|\boldsymbol{x}(n)\|^2 = \|\boldsymbol{x}(n-1)\|^2 + x^2(n) - x^2(n-N)$$

□ *Normalization* of the error signal

$$e_{\text{norm}}(n) = \frac{e(n)}{\|\boldsymbol{x}(n)\|^2 + \Delta}$$

□ Coefficient *update* 

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(n+1) + \mu \boldsymbol{x}(n) e_{\text{norm}}(n)$$

![](_page_34_Picture_11.jpeg)

![](_page_34_Picture_13.jpeg)

### **NLMS versus Affine Projection**

#### **Basic NLMS equations:**

□ Computation of the *error* signal

 $e(n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$ 

□ *Norm* of the excitation vector

$$\|\boldsymbol{x}(n)\|^2 = \|\boldsymbol{x}(n-1)\|^2 + x^2(n) - x^2(n-N)$$

![](_page_35_Figure_7.jpeg)

$$e_{\text{norm}}(n) = \frac{e(n)}{\|\boldsymbol{x}(n)\|^2 + \Delta}$$

□ Coefficient *update* 

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(n+1) + \mu \boldsymbol{x}(n) e_{\text{norm}}(n)$$

1 addition, 1 multiplication, 1 division

N additions, N multiplications

### **NLMS versus Affine Projection**

#### **Basic NLMS equations:**

□ Computation of the *error* signal

 $e(n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \hat{\boldsymbol{h}}(n)$ 

□ *Norm* of the excitation vector

$$\|\boldsymbol{x}(n)\|^2 = \|\boldsymbol{x}(n-1)\|^2 + x^2(n) - x^2(n-N)$$

$$e_{\text{norm}}(n) = \frac{e(n)}{\|\boldsymbol{x}(n)\|^2 + \Delta}$$

□ Coefficient *update* 

$$\hat{h}(n+1) = \hat{h}(n+1) + \mu x(n) e_{\text{norm}}(n)$$

#### Computational complexity

N additions, N multiplications

2 additions, 2 multiplications

1 addition,

1 division

N additions,

1 multiplication,

N multiplications

### Complexity NLMS:

 $2N+3 \approx 2N$  additions,  $2N+3 \approx 2N$  multiplications, 1 division

**Example:**  $f_s = 48 \text{ kHz}$ N = 120001.2 billion additions per second, 1.2 billion multiplic. per second, 48.000 divisions per second

![](_page_36_Picture_17.jpeg)

### Long and Short Excitation Vectors

#### Excitation vector definitions:

Conventional excitation vector

$$\boldsymbol{x}(n) = [x(n), x(n-1), ..., x(n-L+1), x(n-L), ..., x(n-N+1)]^{\mathrm{T}}$$

□ Short excitation vector (usually contained in conventional excitation vector)

$$\boldsymbol{x}_{\text{short}}(n) = [x(n), x(n-1), ..., x(n-L+1)]^{\mathrm{T}}$$

![](_page_37_Picture_9.jpeg)

#### Basic affine projection equations:

□ Computation of the *error* signal vector

$$\boldsymbol{e}(n) = \boldsymbol{y}(n) - \boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$$

□ *Normalization* matrix

$$\boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{X}(n) = \boldsymbol{X}^{\mathrm{T}}(n-1) \boldsymbol{X}(n-1) \\ + \boldsymbol{x}^{\mathrm{T}}_{\mathrm{short}}(n) \boldsymbol{x}_{\mathrm{short}}(n) \\ - \boldsymbol{x}^{\mathrm{T}}_{\mathrm{short}}(n-N) \boldsymbol{x}_{\mathrm{short}}(n-N)$$

□ *Normalization* of the error vector

$$\boldsymbol{e}_{\mathrm{norm}}(n) = \left[ \boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{X}(n) + \Delta \, \boldsymbol{I} \right]^{-1} \boldsymbol{e}(n)$$

□ Coefficient *update* 

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(n) + \mu \boldsymbol{X}(n) \boldsymbol{e}_{\text{norm}}(n)$$

#### Basic NLMS equations (for comparison):

Computation of the error signal

$$e(n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$$

#### □ *Norm* of the excitation vector

$$\|\boldsymbol{x}(n)\|^2 = \|\boldsymbol{x}(n-1)\|^2 + x^2(n) - x^2(n-N)$$

#### □ *Normalization* of the error signal

$$e_{\text{norm}}(n) = \frac{e(n)}{\|\boldsymbol{x}(n)\|^2 + \Delta}$$

#### □ Coefficient *update*

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(n) + \mu \boldsymbol{x}(n) e_{\text{norm}}(n)$$

![](_page_38_Picture_21.jpeg)

#### Basic affine projection equations:

□ Computation of the *error* signal vector

$$\boldsymbol{e}(n) = \boldsymbol{y}(n) - \boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$$

□ *Normalization* matrix

$$\boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{X}(n) = \boldsymbol{X}^{\mathrm{T}}(n-1) \boldsymbol{X}(n-1) \\ + \boldsymbol{x}^{\mathrm{T}}_{\mathrm{short}}(n) \boldsymbol{x}_{\mathrm{short}}(n) \\ - \boldsymbol{x}^{\mathrm{T}}_{\mathrm{short}}(n-N) \boldsymbol{x}_{\mathrm{short}}(n-N)$$

□ *Normalization* of the error vector

$$\boldsymbol{e}_{\mathrm{norm}}(n) = \left[ \boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{X}(n) + \Delta \, \boldsymbol{I} \right]^{-1} \boldsymbol{e}(n) \quad \boldsymbol{\checkmark}$$

□ Coefficient *update* 

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(n) + \mu \boldsymbol{X}(n) \boldsymbol{e}_{\text{norm}}(n)$$

Computational complexity

- N x L additions, N x L multiplications
- 2 x L<sup>2</sup> additions, 2 x L<sup>2</sup> multiplications

L<sup>2</sup> additions,
L<sup>2</sup> multiplications,
1 inversion (L<sup>3</sup> mult.,
L<sup>3</sup> add.)

N x L additions, N x L multiplications

#### Basic affine projection equations:

□ Computation of the *error* signal vector

$$\boldsymbol{e}(n) = \boldsymbol{y}(n) - \boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$$

□ *Normalization* matrix

$$\begin{aligned} \boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{X}(n) &= \boldsymbol{X}^{\mathrm{T}}(n-1) \, \boldsymbol{X}(n-1) \\ &+ \boldsymbol{x}_{\mathrm{short}}^{\mathrm{T}}(n) \, \boldsymbol{x}_{\mathrm{short}}(n) \\ &- \boldsymbol{x}_{\mathrm{short}}^{\mathrm{T}}(n-N) \, \boldsymbol{x}_{\mathrm{short}}(n-N) \end{aligned}$$

□ *Normalization* of the error vector

$$\boldsymbol{e}_{\mathrm{norm}}(n) = \left[ \boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{X}(n) + \Delta \, \boldsymbol{I} \right]^{-1} \boldsymbol{e}(n)$$

□ Coefficient *update* 

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(n) + \mu \boldsymbol{X}(n) \boldsymbol{e}_{\text{norm}}(n)$$

Computational complexity

- N x L additions, N x L multiplications
- 2 x L<sup>2</sup> additions,
  2 x L<sup>2</sup> multiplications
- L<sup>2</sup> additions,
  L<sup>2</sup> multiplications,
  1 inversion (L<sup>3</sup> mult.,
  L<sup>3</sup> add.)
- N x L additions, N x L multiplications

### Complexity AP (approx.):

 $\begin{array}{l} 2NL+3L^2+L^3\,\approx\,2NL \,\,\, {\rm add.,}\\ 2NL+3L^2+L^3\,\approx\,2NL \,\,\, {\rm mul.} \end{array}$ 

| Example:                          |
|-----------------------------------|
| $f_{\rm s} = 48{\rm kHz}$         |
| N = 12000                         |
| L = 4                             |
| 4.6 billion additions per second  |
| 4.6 billion multiplic. per second |

![](_page_40_Picture_19.jpeg)

### NLMS versus Affine Projection (Continued)

![](_page_41_Figure_3.jpeg)

![](_page_41_Picture_4.jpeg)

CAU

### NLMS versus Affine Projection (Continued)

### Boundary conditions of the simulation:

- Excitation: white noise
  Local noise: white noise
  SNR: 60 dB
  Filter length: 12000
  Sample rate: 48 kHz
- Projection order: 4

![](_page_42_Figure_7.jpeg)

![](_page_42_Picture_8.jpeg)

![](_page_43_Picture_1.jpeg)

#### Boundary conditions of the simulation:

![](_page_43_Figure_5.jpeg)

□ Projection order: 4

![](_page_43_Figure_7.jpeg)

![](_page_43_Picture_8.jpeg)

Christian-Albrechts-Universität zu Kiel

### Contents:

### □ Introduction

- □ Affine projection and NLMS
  - Basic equations
  - □ Convergence speed
  - Complexity
- □ From affine projection to fast affine projection
  - □ Fast computation of the error vector
  - □ Fast computation of the coefficient update
  - Matrix inversion

Final remarks

![](_page_44_Picture_13.jpeg)

Steven L. Grant (AKA Gay) while doing pool billiard [Photo Maria Grant]

![](_page_44_Picture_15.jpeg)

![](_page_45_Picture_1.jpeg)

#### *Fast computation of the error vector:*

□ Rearranging the equation for computing the *error vector*:

$$\boldsymbol{e}(n) = \boldsymbol{e}(n|n) = \boldsymbol{y}(n) - \boldsymbol{X}^{\mathrm{T}}(n)\,\boldsymbol{\hat{h}}(n)$$

... splitting the error vector into its first element and the remaining ones ...

$$= \begin{bmatrix} y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \hat{\boldsymbol{h}}(n) \\ \bar{\boldsymbol{y}}(n-1) - \bar{\boldsymbol{X}}^{\mathrm{T}}(n-1) \, \hat{\boldsymbol{h}}(n) \end{bmatrix}$$

... inserting the definitions of "shortened" vectors and matrices ...

$$= \left[ \begin{array}{c} e(n|n) \\ \bar{e}(n-1|n) \end{array} \right]$$

**Quantities with a bar** indicating the uppermost L-1 elements of the corresponding quantities (without the bar):

$$\boldsymbol{e}(n|n) = \left[ egin{array}{c} e(n|n) \ ar{m{e}}(n-1|n) \end{array} 
ight], \qquad \boldsymbol{y}(n) = \left[ egin{array}{c} y(n) \ ar{m{y}}(n-1) \end{array} 
ight], \qquad \boldsymbol{X}(n) = \left[ m{x}(n) \ ar{m{X}}(n-1) 
ight].$$

![](_page_45_Picture_12.jpeg)

![](_page_46_Picture_1.jpeg)

#### *Fast computation of the error vector – continued:*

□ Furthermore the *a posteriori error vector* can also be rewritten:

$$\begin{split} \boldsymbol{e}(n-1|n) &= \boldsymbol{y}(n-1) - \boldsymbol{X}^{\mathrm{T}}(n-1)\,\hat{\boldsymbol{h}}(n) \\ & \dots \text{ inserting } \hat{\boldsymbol{h}}(n) = \hat{\boldsymbol{h}}(n-1) + \Delta \boldsymbol{h}(n-1) \text{ and using the definition of the error vector } \dots \\ &= \boldsymbol{e}(n-1,n-1) - \boldsymbol{X}^{\mathrm{T}}(n-1)\,\boldsymbol{\Delta}\hat{\boldsymbol{h}}(n-1) \\ & \dots \text{ inserting the AP update rule } \boldsymbol{\Delta}\hat{\boldsymbol{h}}(n) = \mu\,\boldsymbol{X}(n-1)\left[\boldsymbol{X}^{\mathrm{T}}(n-1)\,\boldsymbol{X}(n-1) + \boldsymbol{\Delta}\right]^{-1}\boldsymbol{e}(n-1|n-1)\,\dots \\ &= \boldsymbol{e}(n-1,n-1) - \mu\,\boldsymbol{X}^{\mathrm{T}}(n-1)\,\boldsymbol{X}(n-1)\left[\boldsymbol{X}^{\mathrm{T}}(n-1)\,\boldsymbol{X}(n-1) + \boldsymbol{\Delta}\boldsymbol{I}\right]^{-1}\boldsymbol{e}(n-1,n-1) \\ & \dots \text{ assuming a small regularization parameter }\dots \end{split}$$

$$\approx (1-\mu) \boldsymbol{e}(n-1,n-1).$$

**Combining this result and the one from the previous slide** leads to:

$$\boldsymbol{e}(n|n) \approx \left[ \begin{array}{c} e(n|n) \\ (1-\mu)\, \bar{\boldsymbol{e}}(n-1|n-1) \end{array} 
ight].$$

![](_page_47_Picture_1.jpeg)

### From Affine Projection to Fast Affine Projection

#### *Fast computation of the error vector – continued:*

- □ Comparing both versions shows the complexity reduction:
  - **Original version**:

 $\boldsymbol{e}(n|n) = \boldsymbol{y}(n) - \boldsymbol{X}^{\mathrm{T}}(n)\,\boldsymbol{\hat{h}}(n).$ 

 $e(n|n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \hat{\boldsymbol{h}}(n),$ 

□ *Approximated* version:

N x L additions, N x L multiplications

Computational complexity

![](_page_47_Figure_9.jpeg)

Reduction by a factor L!

![](_page_47_Picture_11.jpeg)

 $e(n|n) \approx \left[ \begin{array}{c} e(n|n) \\ (1-\mu) \,\overline{e}(n-1|n-1) \end{array} \right] \cdot$ 

![](_page_48_Picture_1.jpeg)

#### Fast computation of the coefficient update:

□ Rearranging the equation for *updating* the coefficient vector in an iterative manner:

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(0) + \mu \sum_{i=0}^{n} \boldsymbol{X}(n-i) \boldsymbol{e}_{\text{norm}}(n-i|n-i)$$

... splitting the excitation signal matrix  $X(n) = \begin{bmatrix} x(n), x(n-1), ..., x(n-L+1) \end{bmatrix}$ and the normalized error vector  $e_{norm}(n) = \begin{bmatrix} e_{norm,0}(n|n), e_{norm,1}(n|n), ..., e_{norm,L-1}(n|n) \end{bmatrix}^{T}$ ...

$$= \hat{h}(0) + \mu \sum_{i=0}^{n} \sum_{j=0}^{L-1} x(n-i-j) e_{\text{norm},j}(n-i|n-i).$$

![](_page_48_Picture_8.jpeg)

### From Affine Projection to Fast Affine Projection

#### *Fast computation of the coefficient update – continued:*

□ Result from the *last slide*:

$$\hat{h}(n+1) = \hat{h}(0) + \mu \sum_{i=0}^{n} \sum_{j=0}^{L-1} x(n-i-j) e_{\operatorname{norm},j}(n-i|n-i).$$

*Rearranging* the individual terms for n = 7, L = 3 (as an example):

$$\begin{split} \hat{\boldsymbol{h}}(7) &= \ \hat{\boldsymbol{h}}(0) + \mu & \left[ \begin{array}{ccc} \boldsymbol{x}(6) \, e_{\operatorname{norm},0}(6|6) &+ & \boldsymbol{x}(5) \, e_{\operatorname{norm},1}(6|6) &+ & \boldsymbol{x}(4) \, e_{\operatorname{norm},2}(6|6) \\ &+ & \boldsymbol{x}(5) \, e_{\operatorname{norm},0}(5|5) &+ & \boldsymbol{x}(4) \, e_{\operatorname{norm},1}(5|5) \\ &+ & \boldsymbol{x}(4) \, e_{\operatorname{norm},0}(4|4) &+ & \boldsymbol{x}(2) \, e_{\operatorname{norm},2}(5|5) \\ &+ & \boldsymbol{x}(3) \, e_{\operatorname{norm},0}(3|3) &+ & \boldsymbol{x}(2) \, e_{\operatorname{norm},1}(3|3) &+ & \boldsymbol{x}(1) \, e_{\operatorname{norm},2}(3|3) \\ &+ & \boldsymbol{x}(2) \, e_{\operatorname{norm},0}(2|2) &+ & \boldsymbol{x}(1) \, e_{\operatorname{norm},1}(2|2) &+ & \boldsymbol{x}(0) \, e_{\operatorname{norm},2}(2|2) \\ &+ & \boldsymbol{x}(1) \, e_{\operatorname{norm},0}(1|1) &+ & \boldsymbol{x}(0) \, e_{\operatorname{norm},1}(1|1) \\ &+ & \boldsymbol{x}(0) \, e_{\operatorname{norm},0}(0|0) &+ & \boldsymbol{x}(-1) \, e_{\operatorname{norm},2}(1|1) \\ && \boldsymbol{x}(-1) \, e_{\operatorname{norm},1}(0|0) &+ & \boldsymbol{x}(-2) \, e_{\operatorname{norm},2}(0|0) \end{split}$$

![](_page_50_Picture_1.jpeg)

### From Affine Projection to Fast Affine Projection

#### *Fast computation of the coefficient update – continued:*

#### □ Result from the *last slide*:

![](_page_50_Figure_6.jpeg)

![](_page_51_Picture_1.jpeg)

#### Fast computation of the coefficient update – continued:

#### □ Result from the *last slide*:

![](_page_51_Figure_6.jpeg)

We assume that all excitation signal with

A negative index are zero (the excitation "starts" at n = 0).

![](_page_52_Picture_1.jpeg)

#### *Fast computation of the coefficient update – continued:*

#### □ Result from the *last slide*:

![](_page_52_Figure_6.jpeg)

A negative index are zero (the excitation "starts" at n = 0).

![](_page_52_Picture_8.jpeg)

![](_page_53_Picture_1.jpeg)

#### *Fast computation of the coefficient update – continued:*

□ Rewriting the result of the *last slide*:

$$\hat{h}(7) = \hat{h}(0) + \mu \begin{bmatrix} x(6) e_{\text{norm},0}(6|6) + x(5) e_{\text{norm},1}(6|6) + x(4) e_{\text{norm},2}(6|6) \\ + x(5) e_{\text{norm},0}(5|5) + x(4) e_{\text{norm},1}(5|5) \\ + x(4) e_{\text{norm},0}(4|4) \\ & + x(3) e_{\text{norm},0}(4|4) \\ + x(3) e_{\text{norm},0}(3|3) + x(2) e_{\text{norm},1}(3|3) + x(1) e_{\text{norm},2}(3|3) \\ + x(2) e_{\text{norm},0}(2|2) + x(1) e_{\text{norm},1}(2|2) + x(0) e_{\text{norm},2}(2|2) \\ + x(1) e_{\text{norm},0}(1|1) + x(0) e_{\text{norm},1}(1|1) \\ + x(0) e_{\text{norm},0}(0|0) \end{bmatrix} ].$$

$$\hat{h}(n+1) = \hat{h}(0) + \mu \sum_{k=0}^{L-1} x(n-k) \sum_{j=0}^{k} e_{\text{norm},j}(n-k+j|n-k+j) \\ + \mu \sum_{k=L}^{n} x(n-k) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-k+j|n-k+j)$$

![](_page_53_Picture_7.jpeg)

Digital Signal Processing and System Theory | Gerhard Schmidt | Adaptive Filters | Fast Affine Projection

![](_page_54_Picture_1.jpeg)

#### *Fast computation of the coefficient update – continued:*

□ Rearranging the update equation and inserting abbreviations:

$$\hat{\mathbf{h}}(n+1) = \hat{\mathbf{h}}(0) + \mu \sum_{k=0}^{L-1} \mathbf{x}(n-k) \sum_{j=0}^{k} e_{\text{norm},j}(n-k+j|n-k+j) + \mu \sum_{k=L}^{n} \mathbf{x}(n-k) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-k+j|n-k+j)$$

$$\dots \text{ exchanging the order of the last two terms...}$$

$$\hat{\mathbf{h}}(n+1) = \hat{\mathbf{h}}(0) + \mu \sum_{k=L}^{n} \mathbf{x}(n-k) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-k+j|n-k+j) + \mu \sum_{k=0}^{L-1} \mathbf{x}(n-k) \sum_{j=0}^{k} e_{\text{norm},j}(n-k+j|n-k+j)$$

$$\dots \text{ inserting abbreviations for the first two and the last term ...}$$

$$\hat{\mathbf{h}}(n+1) = \underbrace{\hat{\mathbf{h}}(0) + \mu \sum_{k=L}^{n} \mathbf{x}(n-k) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-k+j|n-k+j)}_{\hat{\mathbf{h}}_{\text{pre}}(n+1)} + \mu \sum_{k=0}^{L-1} \mathbf{x}(n-k) \sum_{j=0}^{k} e_{\text{norm},j}(n-k+j|n-k+j)$$

$$\dots \text{ writing the update equation compactly ...}$$

$$\hat{\mathbf{h}}(n+1) = \widehat{\mathbf{h}}_{\text{pre}}(n+1) + \mu \mathbf{X}(n) e_{\text{norm},\text{acc}}(n)$$

![](_page_54_Picture_6.jpeg)

![](_page_55_Picture_1.jpeg)

#### *Fast computation of the coefficient update – continued:*

Definition of the accumulated error vector that is used in the update equation:

$$\boldsymbol{e}_{\text{norm,acc}}(n) = \begin{bmatrix} e_{\text{norm},0}(n|n) \\ e_{\text{norm},1}(n|n) + e_{\text{norm},0}(n-1|n-1) \\ e_{\text{norm},2}(n|n) + e_{\text{norm},1}(n-1|n-1) + e_{\text{norm},0}(n-2|n-2) \\ \vdots \\ e_{\text{norm},L-1}(n|n) + e_{\text{norm},L-2}(n-1|n-1) + \ldots + e_{\text{norm},0}(n-L+1|n-L+1) \end{bmatrix}$$

□ Exploiting that this vector can be computed/updated recursively:

$$\boldsymbol{e}_{\mathrm{norm,acc}}(n) = \boldsymbol{e}_{\mathrm{norm}}(n|n) + \begin{bmatrix} 0\\ \bar{\boldsymbol{e}}_{\mathrm{norm,acc}}(n-1) \end{bmatrix}$$

![](_page_55_Picture_8.jpeg)

#### *Fast computation of the coefficient update – continued:*

After a small amount of steps you will see, that  $\hat{h}(n)$  is not required any more. To see this we start with the definition of the scalar error signal:

$$e(n|n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$$

 $\Box$  Here we can insert our new findings for the update equation  $\hat{h}(n+1) = \hat{h}_{pre}(n+1) + \mu X(n) e_{norm,acc}(n)$ :

$$e(n|n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \hat{\boldsymbol{h}}(n)$$
  
... inserting the new update equation ...  

$$= y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \left[ \hat{\boldsymbol{h}}_{\mathrm{pre}}(n) + \mu \boldsymbol{X}(n-1) \, \boldsymbol{e}_{\mathrm{norm,acc}}(n-1) \right]$$
  
... simplification ...  

$$= y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \hat{\boldsymbol{h}}_{\mathrm{pre}}(n) - \mu \, \boldsymbol{x}^{\mathrm{T}}(n-1) \, \boldsymbol{X}(n-1) \, \boldsymbol{e}_{\mathrm{norm,acc}}(n-1)$$

### C A U Christian-Albrechts-Universität zu Kiel

### From Affine Projection to Fast Affine Projection

### *Fast computation of the coefficient update – continued:*

□ Result from the *last slide*:

 $e(n|n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}_{\mathrm{pre}}(n) - \mu \, \boldsymbol{x}^{\mathrm{T}}(n-1) \, \boldsymbol{X}(n-1) \, \boldsymbol{e}_{\mathrm{norm,acc}}(n-1)$ 

□ Here an *autocorrelation-like vector* that can be computed recursively can be inserted:

$$\hat{\boldsymbol{s}}_{xx}(n) = \hat{\boldsymbol{s}}_{xx}(n-1) + x(n) \boldsymbol{x}_{\text{short}}(n) - x(n-N) \boldsymbol{x}_{\text{short}}(n-N)$$

with the vector  $oldsymbol{x}_{\mathrm{short}}(n)$  being defined as:

$$\boldsymbol{x}_{\text{short}}(n) = \left[ x(n), x(n-1), ..., x(n-L+1) \right]^{\mathrm{T}}$$

□ *Inserting* this, we obtain:

$$e(n|n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}_{\mathrm{pre}}(n) - \mu \, \boldsymbol{\hat{s}}_{xx}^{\mathrm{T}}(n-1) \, \boldsymbol{e}_{\mathrm{norm,acc}}(n-1)$$

Included in the recursive computation of the norm.

![](_page_57_Picture_13.jpeg)

Now we have only the product of two (short, size L) vectors, instead of the (large, size N) vector-matrix-vector product.

![](_page_57_Picture_15.jpeg)

![](_page_58_Picture_1.jpeg)

(1)

### From Affine Projection to Fast Affine Projection

#### *Fast computation of the coefficient update – continued:*

 $\Box$  Finally, we look again at the definition of  $\hat{h}_{pre}(n)$ :

$$\hat{h}_{\text{pre}}(n+1) = \hat{h}(0) + \mu \sum_{k=L}^{n} x(n-k) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-k+j|n-k+j)$$

$$= \hat{h}(0) + \mu x(n-L) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-L+j|n-L+j) + \mu \sum_{k=L+1}^{n} x(n-k) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-k+j|n-k+j)$$

□ When comparing the term (1) with the first line of the equation above, one finds:

□ Inserting this result leads to:

$$\hat{h}_{\text{pre}}(n+1) = \hat{h}_{\text{pre}}(n) + \mu x(n-L) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-L+j|n-L+j)$$

![](_page_58_Picture_12.jpeg)

Digital Signal Processing and System Theory | Gerhard Schmidt | Adaptive Filters | Fast Affine Projection

![](_page_59_Picture_1.jpeg)

#### Fast computation of the matrix inversion:

□ In the original version of the FAP algorithm, also a fast version of the inversion of an autocorrelation matrix was proposed:

$$\boldsymbol{e}_{\mathrm{norm}}(n) = \left[ \boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{X}(n) + \Delta \, \boldsymbol{I} \right]^{-1} \boldsymbol{e}(n)$$

□ However, since we use affine projection algorithms usually only for projection order of 2 ... 4, we omit this step over here.

□ For Interested students it's recommended to have a look into the dissertation of Steven L. Grant.

![](_page_59_Picture_8.jpeg)

### Contents:

### Introduction

□ Affine projection and NLMS

### Basic equations

- □ Convergence speed
- Complexity
- □ From affine projection to fast affine projection
  - □ Fast computation of the error vector
  - □ Fast computation of the coefficient update
  - Matrix inversion

### Final remarks

![](_page_60_Picture_12.jpeg)

![](_page_60_Picture_13.jpeg)

Steven L. Grant (AKA Gay) [Photo Maria Grant]

![](_page_60_Picture_15.jpeg)

### Final Remarks

### Fast affine projection equations:

# $\widehat{\boldsymbol{S}}_{xx}(n) = \widehat{\boldsymbol{S}}_{xx}(n-1) + \boldsymbol{x}_{\text{short}}^{\text{T}}(n) \, \boldsymbol{x}_{\text{short}}(n) - \boldsymbol{x}_{\text{short}}^{\text{T}}(n-N) \, \boldsymbol{x}_{\text{short}}(n-N) \\ \widehat{d}(n) = \boldsymbol{x}^{\text{T}}(n) \, \widehat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \, \widehat{\boldsymbol{s}}_{xx}^{\text{T}}(n-1) \, \boldsymbol{e}_{\text{norm,acc}}(n-1)$

#### **Error signal**

$$e(n|n) = y(n) - \hat{d}(n)$$
  

$$e(n|n) = \begin{bmatrix} e(n|n) \\ (1-\mu) \overline{e}(n-1|n-1) \end{bmatrix}.$$

□ Normalization

$$\boldsymbol{e}_{\text{norm}}(n|n) = \left[\boldsymbol{\hat{S}}_{xx}(n) + \Delta \boldsymbol{I}\right]^{-1} \boldsymbol{e}(n|n)$$
$$\boldsymbol{e}_{\text{norm,acc}}(n) = \boldsymbol{e}_{\text{norm}}(n|n) + \left[\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{\bar{e}}_{\text{norm,acc}}(n-1) \end{array}\right]$$

**Gilter update** 

$$\hat{\boldsymbol{h}}_{\text{pre}}(n+1) = \hat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \boldsymbol{x}(n-L) e_{\text{norm}, \text{acc}, L-1}(n-1)$$

![](_page_61_Picture_10.jpeg)

### Final Remarks

### *Fast affine projection equations:*

#### □ Filtering

$$\hat{\boldsymbol{S}}_{xx}(n) = \hat{\boldsymbol{S}}_{xx}(n-1) + \boldsymbol{x}_{\text{short}}^{\text{T}}(n) \, \boldsymbol{x}_{\text{short}}(n) - \boldsymbol{x}_{\text{short}}^{\text{T}}(n-N) \, \boldsymbol{x}_{\text{short}}(n-N) \\ \hat{d}(n) = \boldsymbol{x}^{\text{T}}(n) \, \hat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \, \hat{\boldsymbol{s}}_{xx}^{\text{T}}(n-1) \, \boldsymbol{e}_{\text{norm,acc}}(n-1)$$

#### **Error signal**

$$e(n|n) = y(n) - \hat{d}(n)$$
  

$$e(n|n) = \begin{bmatrix} e(n|n) \\ (1-\mu)\bar{e}(n-1|n-1) \end{bmatrix}$$

□ Normalization

$$\boldsymbol{e}_{\text{norm}}(n|n) = \left[\boldsymbol{\hat{S}}_{xx}(n) + \Delta \boldsymbol{I}\right]^{-1} \boldsymbol{e}(n|n)$$
$$\boldsymbol{e}_{\text{norm,acc}}(n) = \boldsymbol{e}_{\text{norm}}(n|n) + \left[\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{\bar{e}}_{\text{norm,acc}}(n-1) \end{array}\right]$$

#### **Gilter update**

$$\hat{\boldsymbol{h}}_{\text{pre}}(n+1) = \hat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \boldsymbol{x}(n-L) e_{\text{norm}, \text{acc}, L-1}(n-1)$$

### Complexity AP (approx.):

 $\begin{array}{l} 2NL+3L^2+L^3\,\approx\,2NL \ \text{add.,}\\ 2NL+3L^2+L^3\,\approx\,2NL \ \text{mul.} \end{array}$ 

| Example:                          |
|-----------------------------------|
| $f_{\rm s} = 48{\rm kHz}$         |
| N = 12000                         |
| L = 4                             |
| 4.6 billion additions per second, |
| 4.6 billion multiplic. per second |

![](_page_62_Picture_16.jpeg)

### Final Remarks

#### Fast affine projection equations: *Complexity AP (approx.):* $2NL + 3L^2 + L^3 \approx 2NL$ add... **G** Filtering $2NL + 3L^2 + L^3 \approx 2NL$ mul. $\hat{\boldsymbol{S}}_{xx}(n) = \hat{\boldsymbol{S}}_{xx}(n-1) + \boldsymbol{x}_{\text{short}}^{\text{T}}(n) \boldsymbol{x}_{\text{short}}(n) - \boldsymbol{x}_{\text{short}}^{\text{T}}(n-N) \boldsymbol{x}_{\text{short}}(n-N)$ $\hat{d}(n) = \boldsymbol{x}^{\mathrm{T}}(n) \, \hat{\boldsymbol{h}}_{\mathrm{pre}}(n) + \mu \, \hat{\boldsymbol{s}}_{xx}^{\mathrm{T}}(n-1) \, \boldsymbol{e}_{\mathrm{norm,acc}}(n-1)$ **C** Error signal Computational complexity $e(n|n) = y(n) - \hat{d}(n)$ $\boldsymbol{e}(n|n) = \left[ \begin{array}{c} \boldsymbol{e}(n|n) \\ (1-\mu)\,\boldsymbol{\bar{e}}(n-1|n-1) \end{array} \right].$ $2 \times L^2$ additions, $2 \times L^2$ multiplications N+L additions, N+L multiplications □ Normalization 1 addition, 0 multiplications $\boldsymbol{e}_{\mathrm{norm}}(n|n) = \left[ \hat{\boldsymbol{S}}_{xx}(n) + \Delta \boldsymbol{I} \right]^{-1} \boldsymbol{e}(n|n)$ L additions, L multiplications $\boldsymbol{e}_{\text{norm,acc}}(n) = \boldsymbol{e}_{\text{norm}}(n|n) + \begin{bmatrix} 0 \\ \bar{\boldsymbol{e}}_{\text{norm acc}}(n-1) \end{bmatrix}$ L<sup>2</sup> additions, L<sup>2</sup> multiplications 1 inversion (L<sup>3</sup> mult., L<sup>3</sup> add.) **Gilter update** 0 multiplications Ladditions, $\hat{\boldsymbol{h}}_{\text{pre}}(n+1) = \hat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \boldsymbol{x}(n-L) e_{\text{norm.acc},L-1}(n-1) \checkmark$ N additions, N multiplications

![](_page_63_Picture_3.jpeg)

### Final Remarks

### Fast affine projection equations:

#### □ Filtering

$$\hat{\boldsymbol{S}}_{xx}(n) = \hat{\boldsymbol{S}}_{xx}(n-1) + \boldsymbol{x}_{\text{short}}^{\text{T}}(n) \, \boldsymbol{x}_{\text{short}}(n) - \boldsymbol{x}_{\text{short}}^{\text{T}}(n-N) \, \boldsymbol{x}_{\text{short}}(n-N) \\ \hat{\boldsymbol{d}}(n) = \boldsymbol{x}^{\text{T}}(n) \, \hat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \, \hat{\boldsymbol{s}}_{xx}^{\text{T}}(n-1) \, \boldsymbol{e}_{\text{norm,acc}}(n-1)$$

#### **Error signal**

$$e(n|n) = y(n) - \hat{d}(n)$$
  

$$e(n|n) = \begin{bmatrix} e(n|n) \\ (1-\mu) \bar{e}(n-1|n-1) \end{bmatrix}$$

**D** Normalization

$$\boldsymbol{e}_{\text{norm}}(n|n) = \left[\boldsymbol{\hat{S}}_{xx}(n) + \Delta \boldsymbol{I}\right]^{-1} \boldsymbol{e}(n|n)$$
$$\boldsymbol{e}_{\text{norm,acc}}(n) = \boldsymbol{e}_{\text{norm}}(n|n) + \left[\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{\bar{e}}_{\text{norm,acc}}(n-1) \end{array}\right]$$

#### **Gilter update**

$$\hat{\boldsymbol{h}}_{\text{pre}}(n+1) = \hat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \boldsymbol{x}(n-L) e_{\text{norm},\text{acc},L-1}(n-1)$$

### Complexity AP (approx.):

 $2NL + 3L^2 + L^3 \approx 2NL \text{ add.,}$  $2NL + 3L^2 + L^3 \approx 2NL \text{ mul.}$ 

Complexity FAP (approx.):  $2N + 3L + 3L^{2} + L^{3} \approx 2N \text{ add.,}$   $2N + 2L + 3L^{2} + L^{3} \approx 2N \text{ mul.}$ 

#### Example:

 $f_{\rm s} = 48 \, {\rm kHz} \ N = 12000 \ L = 4$ 

AP: 4.6 billion ops. per secondFAP: 1.2 billion ops. per second

![](_page_64_Picture_19.jpeg)

### Summary and Outlook

### This week and last week:

- □ Introductory Remarks
- □ Recursive Least Squares (RLS) Algorithm
- □ Least Mean Square Algorithm (LMS Algorithm) Part 1
- □ Least Mean Square Algorithm (LMS Algorithm) Part 2
- □ Affine Projection Algorithm (AP Algorithm)
- □ Fast Affine Projection Algorithm (FAP Algorithm)

### Next part:

Control of Adaptive Filters

![](_page_65_Picture_11.jpeg)

![](_page_65_Picture_13.jpeg)