

Adaptive Filters – Algorithms (Part 2)

Gerhard Schmidt

Christian-Albrechts-Universität zu Kiel Faculty of Engineering Institute of Electrical and Information Engineering Digital Signal Processing and System Theory

Christian-Albrechts-Universität zu Kiel

Today

Adaptive Algorithms:

Introductory Remarks

- □ Recursive Least Squares (RLS) Algorithm
- □ Least Mean Square Algorithm (LMS Algorithm) Part 1

□ Least Mean Square Algorithm (LMS Algorithm) – Part 2

- □ Affine Projection Algorithm (AP Algorithm)
- □ Fast Affine Projection Algorithm (FAP Algorithm)

Geometrical Explanation of Convergence – Part 1

Structure:

System:

$$oldsymbol{h} = egin{bmatrix} h_0, \, h_1, \, ..., \, h_{N-1} \end{bmatrix}^{\mathrm{T}}$$

System output:
$$d(n) = \sum_{i=0}^{N-1} h_i x(n-i) = h^T x(n) = x^T(n) h$$

Least Mean Square (LMS) Algorithm

Geometrical Explanation of Convergence – Part 2

Error signal:

$$e(n) = d(n) - \widehat{d}(n)$$

= $\mathbf{h}^{\mathrm{T}} \mathbf{x}(n) - \widehat{\mathbf{h}}^{\mathrm{T}}(n) \mathbf{x}(n) = \left[\mathbf{h} - \widehat{\mathbf{h}}(n)\right]^{\mathrm{T}} \mathbf{x}(n)$
= $\mathbf{h}_{\Delta}^{\mathrm{T}}(n) \mathbf{x}(n) = \mathbf{x}^{\mathrm{T}}(n) \mathbf{h}_{\Delta}(n)$

Difference vector:

$$\boldsymbol{h}_{\Delta}(n) = \boldsymbol{h} - \widehat{\boldsymbol{h}}(n)$$

LMS algorithm:

$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu e(n) \boldsymbol{x}(n)$$

$$= \widehat{\boldsymbol{h}}(n) + \mu \boldsymbol{x}(n) \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{h}_{\Delta}(n)$$

$$\underbrace{\widehat{\boldsymbol{h}}(n+1) - \boldsymbol{h}}_{-\boldsymbol{h}_{\Delta}(n+1)} = \underbrace{\widehat{\boldsymbol{h}}(n) - \boldsymbol{h}}_{-\boldsymbol{h}_{\Delta}(n)} + \mu \boldsymbol{x}(n) \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{h}_{\Delta}(n)$$

$$\boldsymbol{h}_{\Delta}(n+1) = \boldsymbol{h}_{\Delta}(n) - \mu \boldsymbol{x}(n) \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{h}_{\Delta}(n)$$

$$= \left[\mathbf{1} - \mu \boldsymbol{x}(n) \boldsymbol{x}^{\mathrm{T}}(n) \right] \boldsymbol{h}_{\Delta}(n)$$

C A U Christian-Albrechts-Universität zu Kiel

Geometrical Explanation of Convergence – Part 3

The vector $h_{\Delta}(n)$ will be split into *two components*:

$$\boldsymbol{h}_{\Delta}(n) = \boldsymbol{h}_{\Delta}^{\parallel}(n) + \boldsymbol{h}_{\Delta}^{\perp}(n)$$

It applies to *parallel components*:

$$\boldsymbol{h}_{\Delta}^{\parallel}(n) = r(n) \boldsymbol{x}(n)$$

With:

$$r(n) = rac{oldsymbol{x}^{\mathrm{T}}(n) oldsymbol{h}_{\Delta}(n)}{\left\|oldsymbol{x}(n)
ight\|^2}$$

$$\|\boldsymbol{x}(n)\|^2 = \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{x}(n) = \sum_{l=0}^{N-1} x^2(n-l)$$

$$\boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{h}_{\Delta}(n) = \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{h}_{\Delta}^{\parallel}(n) = \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{x}(n) r(n)$$

Geometrical Explanation of Convergence – Part 4

Contraction of the system error vector:

 $\begin{aligned} & \text{... result obtained two slides before ...} \\ & \boldsymbol{h}_{\Delta}(n+1) &= \begin{bmatrix} \mathbf{1} - \mu \, \boldsymbol{x}(n) \, \boldsymbol{x}^{\mathrm{T}}(n) \end{bmatrix} \, \boldsymbol{h}_{\Delta}(n) \\ & \text{... splitting the system error vector ...} \\ &= \begin{bmatrix} \mathbf{1} - \mu \, \boldsymbol{x}(n) \, \boldsymbol{x}^{\mathrm{T}}(n) \end{bmatrix} \begin{bmatrix} \boldsymbol{h}_{\Delta}^{\parallel}(n) + \boldsymbol{h}_{\Delta}^{\perp}(n) \end{bmatrix} \\ & \text{... using } \boldsymbol{h}_{\Delta}^{\parallel}(n) = r(n) \, \boldsymbol{x}(n) \text{ and that } \boldsymbol{h}_{\Delta}^{\perp}(n) \text{ is orthogonal to } \boldsymbol{x}(n) \text{ ...} \\ &= \begin{bmatrix} 1 - \mu \| \boldsymbol{x}(n) \|^2 \end{bmatrix} \boldsymbol{h}_{\Delta}^{\parallel}(n) + \boldsymbol{h}_{\Delta}^{\perp}(n) \end{aligned}$

... this results in ...

Convergence if $\left|1-\mu\left\|\boldsymbol{x}(n)\right\|^{2}\right| < 1$ and $\boldsymbol{h}_{\Delta}^{\parallel}(n) \neq 0$.

CAU

NLMS Algorithm – Part 1

LMS algorithm:

$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu e(n) \boldsymbol{x}(n)$$

Normalized LMS algorithm:

$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu f_{\text{norm}}(\boldsymbol{x}(n)) e(n) \boldsymbol{x}(n)$$

CAU

NLMS Algorithm – Part 2

Adaption (in general): $\widehat{h}(n+1) = \widehat{h}(n) + \Delta \widehat{h}(n)$

A priori error: $e(n) = e(n|n) = d(n) - \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{x}(n)$

A posteriori error:

$$e(n|n+1) = d(n) - \widehat{\boldsymbol{h}}^{\mathrm{T}}(n+1) \boldsymbol{x}(n)$$

= $d(n) - \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{x}(n) - \boldsymbol{\Delta} \boldsymbol{h}^{\mathrm{T}}(n) \boldsymbol{x}(n)$
= $e(n|n) - \boldsymbol{\Delta} \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{x}(n)$

A successful adaptation requires

$$\left|e(n|n+1)\right| \leq \left|e(n|n)\right|$$

or:

$$\left[e(n|n+1)\right]^2 \leq \left[e(n|n)\right]^2$$

CAU

NLMS Algorithm – Part 3

Convergence condition: $[e(n|n+1)]^2 \leq [e(n|n)]^2$

Inserting the update equation:

$$\begin{aligned} \left[e(n|n+1) \right]^2 &= \left[e(n|n) - \boldsymbol{\Delta} \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \, \boldsymbol{x}(n) \right] \left[e(n|n) - \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) \right] \\ &= \left[e(n|n) \right]^2 - e(n|n) \, \boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) \\ &- \boldsymbol{\Delta} \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \, \boldsymbol{x}(n) \, e(n|n) + \, \boldsymbol{\Delta} \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \, \boldsymbol{x}(n) \, \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) \end{aligned}$$

Condition:
$$e(n|n) \mathbf{x}^{\mathrm{T}}(n) \Delta \widehat{\mathbf{h}}(n) + e(n|n) \Delta \widehat{\mathbf{h}}^{\mathrm{T}} \mathbf{x}(n) - \Delta \widehat{\mathbf{h}}^{\mathrm{T}} \mathbf{x}(n) \mathbf{x}^{\mathrm{T}}(n) \Delta \widehat{\mathbf{h}}(n) \ge 0$$

Ansatz:

$$\boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) = \mu e(n|n) \frac{\boldsymbol{M}(n) \boldsymbol{x}(n)}{\boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{M}(n) \boldsymbol{x}(n)}$$

with a real and symmetric matrix $oldsymbol{M}(n)$

NLMS Algorithm – Part 4

Condition:
$$e(n|n) \mathbf{x}^{\mathrm{T}}(n) \Delta \hat{\mathbf{h}}(n) + e(n|n) \Delta \hat{\mathbf{h}}^{\mathrm{T}}(n) \mathbf{x}(n)$$

 $- \Delta \hat{\mathbf{h}}^{\mathrm{T}} \mathbf{x}(n) \mathbf{x}^{\mathrm{T}}(n) \Delta \hat{\mathbf{h}}(n) \ge 0$

 $\boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) = \mu e(n|n) \frac{\boldsymbol{M}(n) \boldsymbol{x}(n)}{\boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{M}(n) \boldsymbol{x}(n)}$ Ansatz:

Step size requirement for the NLMS algorithm (after a few lines ...):

 $\mu \ [2 - \mu] > 0$ or $0 < \mu < 2$

For comparison with LMS algorithm: $0 < \mu < \frac{2}{N \sigma_r^2}$

Least Mean Square (LMS) Algorithm

CAU

NLMS Algorithm – Part 5

Ansatz:

$$\Delta \widehat{\boldsymbol{h}}(n) = \mu e(n|n) \frac{\boldsymbol{M}(n) \boldsymbol{x}(n)}{\boldsymbol{x}^{\mathrm{T}}(n) \boldsymbol{M}(n) \boldsymbol{x}(n)}$$

In the most simple case M(n) is a unit matrix:

$$\boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) = \mu e(n) \, \frac{\boldsymbol{x}(n)}{\boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{x}(n)}$$

Adaptation rule for the NLMS algorithm:

$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \frac{\mu}{\boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{x}(n)} \, \boldsymbol{x}(n) \, e(n)$$

Matlab-Demo: Speed of Convergence

Least Mean Square (LMS) Algorithm

Convergence Examples – Part 1

Setup:

White noise: 256N=1 =

Mag-10

20-sct

§ -30 -40

-50 0

500

1000

1500

2000

Frequency

2500

Least Mean Square (LMS) Algorithm

Convergence Examples – Part 2

Setup:

Today

Adaptive Algorithms:

- □ Introductory Remarks
- Recursive Least Squares (RLS) Algorithm
- □ Least Mean Square Algorithm (LMS Algorithm) Part 1
- □ Least Mean Square Algorithm (LMS Algorithm) Part 2
- □ Affine Projection Algorithm (AP Algorithm)
- □ Fast Affine Projection Algorithm (FAP Algorithm)

Basics

Signal vector: Filter vector: Filter output: Signal matrix:

$$\mathbf{x}(n) = \begin{bmatrix} x(n), x(n-1), x(n-2), \dots, x(n-N+1) \end{bmatrix}^{\mathrm{T}}$$

$$\widehat{\mathbf{h}}(n) = \begin{bmatrix} \widehat{\mathbf{h}}_{0}(n), \widehat{\mathbf{h}}_{1}(n), \widehat{\mathbf{h}}_{2}(n), \dots, \widehat{\mathbf{h}}_{N-1}(n) \end{bmatrix}^{\mathrm{T}}$$

$$\widehat{\mathbf{d}}(n) = \widehat{\mathbf{h}}^{\mathrm{T}}(n) \mathbf{x}(n) = \mathbf{x}^{\mathrm{T}}(n) \widehat{\mathbf{h}}(n)$$

$$\mathbf{x}(n) = \begin{bmatrix} \mathbf{x}(n), \mathbf{x}(n-1), \dots, \mathbf{x}(n-L+1) \end{bmatrix}$$

$$L \text{ describes the order of the procedure}$$

Signal Matrix

Definition of the signal matrix:

Error Vector – Part 1

Signal matrix:	$\boldsymbol{X}(n) = \left[\boldsymbol{x}(n), \boldsymbol{x}(n-1), , \boldsymbol{x}(n-L+1) \right]$
Desired signal vector:	$\boldsymbol{d}(n) = \left[d(n), d(n-1), , d(n-L+1)\right]^{\mathrm{T}}$
Filter output vector:	$\widehat{\boldsymbol{d}}(n) = \left[\widehat{d}(n), \widehat{d}(n-1), , \widehat{d}(n-L+1)\right]^{\mathrm{T}}$
A priori error vector:	$\boldsymbol{e}(n n) = \boldsymbol{d}(n) - \widehat{\boldsymbol{d}}(n) = \boldsymbol{d}(n) - \boldsymbol{X}^{\mathrm{T}}(n) \widehat{\boldsymbol{h}}(n)$
Adaption rule:	$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \boldsymbol{\Delta}\widehat{\boldsymbol{h}}(n)$
A posteriori error vector:	$e(n n+1) = d(n) - \mathbf{X}^{\mathrm{T}}(n)\widehat{\mathbf{h}}(n+1)$ = $d(n) - \mathbf{X}^{\mathrm{T}}(n)\widehat{\mathbf{h}}(n) - \mathbf{X}^{\mathrm{T}}(n)\mathbf{\Delta}\widehat{\mathbf{h}}(n)$ = $e(n n) - \mathbf{X}^{\mathrm{T}}(n)\mathbf{\Delta}\widehat{\mathbf{h}}(n)$

Error Vector – Part 2

$$\begin{aligned} \boldsymbol{e}(n|n+1) &= \boldsymbol{d}(n) - \boldsymbol{X}^{\mathrm{T}}(n)\,\widehat{\boldsymbol{h}}(n+1) \\ &= \boldsymbol{d}(n) - \boldsymbol{X}^{\mathrm{T}}(n)\,\widehat{\boldsymbol{h}}(n) - \boldsymbol{X}^{\mathrm{T}}(n)\,\boldsymbol{\Delta}\widehat{\boldsymbol{h}}(n) \\ &= \boldsymbol{e}(n|n) - \boldsymbol{X}^{\mathrm{T}}(n)\,\boldsymbol{\Delta}\widehat{\boldsymbol{h}}(n) \end{aligned}$$

Requirement:

$$\left\|\boldsymbol{e}(n|n+1)\right\| \le \left\|\boldsymbol{e}(n|n)\right\|$$

 $\left\| \boldsymbol{e}(n|n+1) \right\|^2 \le \left\| \boldsymbol{e}(n|n) \right\|^2$

$$\begin{aligned} \|\boldsymbol{e}(n|n+1)\|^2 &= \left[\boldsymbol{e}^{\mathrm{T}}(n|n) - \boldsymbol{\Delta}\widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{X}(n)\right] \left[\boldsymbol{e}(n|n) - \boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{\Delta}\widehat{\boldsymbol{h}}(n)\right] \\ &= \left\|\boldsymbol{e}(n|n)\right\|^2 - \boldsymbol{e}^{\mathrm{T}}(n|n) \boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{\Delta}\widehat{\boldsymbol{h}}(n) \\ - \boldsymbol{\Delta}\widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{X}(n) \boldsymbol{e}(n|n) + \boldsymbol{\Delta}\widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{X}(n) \boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{\Delta}\widehat{\boldsymbol{h}}(n) \end{aligned}$$

Requirement:

$$\boldsymbol{e}^{\mathrm{T}}(n|n) \boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) + \boldsymbol{\Delta} \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{X}(n) \boldsymbol{e}^{*}(n|n) \\ - \boldsymbol{\Delta} \widehat{\boldsymbol{h}}^{\mathrm{T}}(n) \boldsymbol{X}(n) \boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{\Delta} \widehat{\boldsymbol{h}}(n) \geq 0$$

Ansatz

Requirement:
$$e^{\mathrm{T}}(n|n) \mathbf{X}^{\mathrm{T}}(n) \Delta \widehat{\mathbf{h}}(n) + \Delta \widehat{\mathbf{h}}^{\mathrm{T}}(n) \mathbf{X}(n) e^{*}(n|n)$$
 $- \Delta \widehat{\mathbf{h}}^{\mathrm{T}}(n) \mathbf{X}(n) \mathbf{X}^{\mathrm{T}}(n) \Delta \widehat{\mathbf{h}}(n) \ge 0$

Ansatz:
$$\Delta \hat{h}(n) = \mu M(n) X(n) \left[X^{\mathrm{T}}(n) M(n) X(n) \right]^{-1}$$

with the symmetric matrix $oldsymbol{M}(n) = oldsymbol{M}^{\mathrm{T}}(n)$

 $\boldsymbol{e}(n|n)$

Step-size condition:

$$\mu \, [\, 2 - \mu \,] > 0 \qquad \text{or} \qquad 0 < \mu < 2$$

In the most simple case M(n) is the unit matrix:

$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu \boldsymbol{X}(n) \left[\boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{X}(n) \right]^{-1} \boldsymbol{e}(n|n)$$

Geometrical Interpretation

Regularization

Non-regularised version of the AP algorithm: $\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu \boldsymbol{X}(n) \left[\boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{X}(n) \right]_{L \times L}^{-1} \boldsymbol{e}(n|n)$

Regularised version of the AP algorithm:

$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu \boldsymbol{X}(n) \left[\boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{X}(n) + \Delta \boldsymbol{I} \right]_{L \times L}^{-1} \boldsymbol{e}(n|n) ,$$

where Δ is a small positive constant.

Convergence of Different Algorithms – Part 2

N

 λ

=

=

Summary and Outlook

This week and last week:

- □ Introductory Remarks
- □ Recursive Least Squares (RLS) Algorithm
- □ Least Mean Square Algorithm (LMS Algorithm) Part 1
- □ Least Mean Square Algorithm (LMS Algorithm) Part 2
- □ Affine Projection Algorithm (AP Algorithm)
- □ Fast Affine Projection Algorithm (FAP Algorithm)

Next part:

Control of Adaptive Filters

Christian-Albrechts-Universität zu Kiel

Contents:

Introduction

- □ Affine projection and NLMS
 - Basic equations
 - □ Convergence speed
 - □ Complexity
- □ From affine projection to fast affine projection
 - □ Fast computation of the error vector
 - □ Fast computation of the coefficient update
 - □ Matrix inversion

Final remarks

Introduction

Fast version of adaptive algorithms:

- Until now we have mainly focused on *direct implementations* of adaptive algorithms.
- Usually, we found that the *more robust* (e.g. in terms on independence on the input statistics) an algorithms is, the *more expensive* (e.g. in terms of multiplications and additions) it is.

Introduction

Fast version of adaptive algorithms:

- Until new we have mainly focused on *direct implementations* of adaptive algorithms.
- Usually, we found that the *more robust* (e.g. in terms on independence on the input statistics) an algorithms is, the *more expensive* (e.g. in terms of multiplications and additions) it is.
- □ Now we will focus on so-called fast versions of algorithms.
- □ These fast versions exist for virtually all algorithms.
- The problem is often, that numerical stability is not easy to achieve.
- We will focus now on a fast version of the fast affine projection algorithm, shorty called FAP.

Introduction

Fast version of adaptive algorithms:

- □ Invented by Steve(n) L. Grant (AKA Gay) at Bell Labs in 1995.
- □ A very interesting algorithm, since it combines RLS-like speed for colored signals with LMS-like complexity.
- Steve was (unfortunately, he died a couple of years ago) a very nice guy, and the upcoming slides are dedicated to him: "To Steve, a great, clever and smart researcher with a big friendly heart".

Steven L. Grant (AKA Gay, together with his wife Maria), picture made at ICASSP Brisbane, 2015 [Photo G. Elko]

Contents:

Introduction

- □ Affine projection and NLMS
 - Basic equations
 - Convergence speed
 - Complexity
- □ From affine projection to fast affine projection
 - □ Fast computation of the error vector
 - □ Fast computation of the coefficient update
 - Matrix inversion

□ Final remarks

Steven L. Grant (AKA Gay, together with Peter Eneroth [left], Tomas Gänsler [third] and Jacob Benesty [right]), picture made at ICASSP Seattle, 1998 [Photo Maria Grant]

NLMS versus Affine Projection

Basic NLMS equations:

• Computation of the *error* signal

$$e(n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$$

□ *Norm* of the excitation vector

$$\|\boldsymbol{x}(n)\|^2 = \|\boldsymbol{x}(n-1)\|^2 + x^2(n) - x^2(n-N)$$

□ *Normalization* of the error signal

$$e_{\text{norm}}(n) = \frac{e(n)}{\|\boldsymbol{x}(n)\|^2 + \Delta}$$

□ Coefficient *update*

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(n+1) + \mu \boldsymbol{x}(n) e_{\text{norm}}(n)$$

NLMS versus Affine Projection

Basic NLMS equations:

□ Computation of the *error* signal

 $e(n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$

□ *Norm* of the excitation vector

$$\|\boldsymbol{x}(n)\|^2 = \|\boldsymbol{x}(n-1)\|^2 + x^2(n) - x^2(n-N)$$

$$e_{\text{norm}}(n) = \frac{e(n)}{\|\boldsymbol{x}(n)\|^2 + \Delta}$$

□ Coefficient *update*

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(n+1) + \mu \boldsymbol{x}(n) e_{\text{norm}}(n)$$

1 addition, 1 multiplication, 1 division

N additions, N multiplications

NLMS versus Affine Projection

Basic NLMS equations:

□ Computation of the *error* signal

 $e(n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \hat{\boldsymbol{h}}(n)$

□ *Norm* of the excitation vector

$$\|\boldsymbol{x}(n)\|^2 = \|\boldsymbol{x}(n-1)\|^2 + x^2(n) - x^2(n-N)$$

$$e_{\text{norm}}(n) = \frac{e(n)}{\|\boldsymbol{x}(n)\|^2 + \Delta}$$

□ Coefficient *update*

$$\hat{h}(n+1) = \hat{h}(n+1) + \mu x(n) e_{\text{norm}}(n)$$

Computational complexity

N additions, N multiplications

2 additions, 2 multiplications

1 addition,

1 division

N additions,

1 multiplication,

N multiplications

Complexity NLMS:

 $2N+3 \approx 2N$ additions, $2N+3 \approx 2N$ multiplications, 1 division

Example: $f_s = 48 \text{ kHz}$ N = 120001.2 billion additions per second, 1.2 billion multiplic. per second, 48.000 divisions per second

Long and Short Excitation Vectors

Excitation vector definitions:

Conventional excitation vector

$$\boldsymbol{x}(n) = [x(n), x(n-1), ..., x(n-L+1), x(n-L), ..., x(n-N+1)]^{\mathrm{T}}$$

□ Short excitation vector (usually contained in conventional excitation vector)

$$\boldsymbol{x}_{\text{short}}(n) = [x(n), x(n-1), ..., x(n-L+1)]^{\mathrm{T}}$$

Basic affine projection equations:

□ Computation of the *error* signal vector

$$\boldsymbol{e}(n) = \boldsymbol{y}(n) - \boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$$

□ *Normalization* matrix

$$\boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{X}(n) = \boldsymbol{X}^{\mathrm{T}}(n-1) \boldsymbol{X}(n-1) \\ + \boldsymbol{x}^{\mathrm{T}}_{\mathrm{short}}(n) \boldsymbol{x}_{\mathrm{short}}(n) \\ - \boldsymbol{x}^{\mathrm{T}}_{\mathrm{short}}(n-N) \boldsymbol{x}_{\mathrm{short}}(n-N)$$

□ *Normalization* of the error vector

$$\boldsymbol{e}_{\mathrm{norm}}(n) = \left[\boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{X}(n) + \Delta \, \boldsymbol{I} \right]^{-1} \boldsymbol{e}(n)$$

□ Coefficient *update*

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(n) + \mu \boldsymbol{X}(n) \boldsymbol{e}_{\text{norm}}(n)$$

Basic NLMS equations (for comparison):

Computation of the error signal

$$e(n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$$

□ *Norm* of the excitation vector

$$\|\boldsymbol{x}(n)\|^2 = \|\boldsymbol{x}(n-1)\|^2 + x^2(n) - x^2(n-N)$$

□ *Normalization* of the error signal

$$e_{\text{norm}}(n) = \frac{e(n)}{\|\boldsymbol{x}(n)\|^2 + \Delta}$$

□ Coefficient *update*

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(n) + \mu \boldsymbol{x}(n) e_{\text{norm}}(n)$$

Basic affine projection equations:

□ Computation of the *error* signal vector

$$\boldsymbol{e}(n) = \boldsymbol{y}(n) - \boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$$

□ *Normalization* matrix

$$\boldsymbol{X}^{\mathrm{T}}(n) \boldsymbol{X}(n) = \boldsymbol{X}^{\mathrm{T}}(n-1) \boldsymbol{X}(n-1) \\ + \boldsymbol{x}^{\mathrm{T}}_{\mathrm{short}}(n) \boldsymbol{x}_{\mathrm{short}}(n) \\ - \boldsymbol{x}^{\mathrm{T}}_{\mathrm{short}}(n-N) \boldsymbol{x}_{\mathrm{short}}(n-N)$$

□ *Normalization* of the error vector

$$\boldsymbol{e}_{\mathrm{norm}}(n) = \left[\boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{X}(n) + \Delta \, \boldsymbol{I} \right]^{-1} \boldsymbol{e}(n) \quad \boldsymbol{\checkmark}$$

□ Coefficient *update*

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(n) + \mu \boldsymbol{X}(n) \boldsymbol{e}_{\text{norm}}(n)$$

Computational complexity

- N x L additions, N x L multiplications
- 2 x L² additions, 2 x L² multiplications

L² additions,
L² multiplications,
1 inversion (L³ mult.,
L³ add.)

N x L additions, N x L multiplications

Basic affine projection equations:

□ Computation of the *error* signal vector

$$\boldsymbol{e}(n) = \boldsymbol{y}(n) - \boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$$

□ *Normalization* matrix

$$\begin{aligned} \boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{X}(n) &= \boldsymbol{X}^{\mathrm{T}}(n-1) \, \boldsymbol{X}(n-1) \\ &+ \boldsymbol{x}_{\mathrm{short}}^{\mathrm{T}}(n) \, \boldsymbol{x}_{\mathrm{short}}(n) \\ &- \boldsymbol{x}_{\mathrm{short}}^{\mathrm{T}}(n-N) \, \boldsymbol{x}_{\mathrm{short}}(n-N) \end{aligned}$$

□ *Normalization* of the error vector

$$\boldsymbol{e}_{\mathrm{norm}}(n) = \left[\boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{X}(n) + \Delta \, \boldsymbol{I} \right]^{-1} \boldsymbol{e}(n)$$

□ Coefficient *update*

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(n) + \mu \boldsymbol{X}(n) \boldsymbol{e}_{\text{norm}}(n)$$

Computational complexity

- N x L additions, N x L multiplications
- 2 x L² additions,
 2 x L² multiplications
- L² additions,
 L² multiplications,
 1 inversion (L³ mult.,
 L³ add.)
- N x L additions, N x L multiplications

Complexity AP (approx.):

 $\begin{array}{l} 2NL+3L^2+L^3\,\approx\,2NL \,\,\, {\rm add.,}\\ 2NL+3L^2+L^3\,\approx\,2NL \,\,\, {\rm mul.} \end{array}$

Example:
$f_{\rm s} = 48{\rm kHz}$
N = 12000
L = 4
4.6 billion additions per second
4.6 billion multiplic. per second

NLMS versus Affine Projection (Continued)

CAU

NLMS versus Affine Projection (Continued)

Boundary conditions of the simulation:

- Excitation: white noise
 Local noise: white noise
 SNR: 60 dB
 Filter length: 12000
 Sample rate: 48 kHz
- Projection order: 4

Boundary conditions of the simulation:

□ Projection order: 4

Christian-Albrechts-Universität zu Kiel

Contents:

□ Introduction

- □ Affine projection and NLMS
 - Basic equations
 - □ Convergence speed
 - Complexity
- □ From affine projection to fast affine projection
 - □ Fast computation of the error vector
 - □ Fast computation of the coefficient update
 - Matrix inversion

Final remarks

Steven L. Grant (AKA Gay) while doing pool billiard [Photo Maria Grant]

Fast computation of the error vector:

□ Rearranging the equation for computing the *error vector*:

$$\boldsymbol{e}(n) = \boldsymbol{e}(n|n) = \boldsymbol{y}(n) - \boldsymbol{X}^{\mathrm{T}}(n)\,\boldsymbol{\hat{h}}(n)$$

... splitting the error vector into its first element and the remaining ones ...

$$= \begin{bmatrix} y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \hat{\boldsymbol{h}}(n) \\ \bar{\boldsymbol{y}}(n-1) - \bar{\boldsymbol{X}}^{\mathrm{T}}(n-1) \, \hat{\boldsymbol{h}}(n) \end{bmatrix}$$

... inserting the definitions of "shortened" vectors and matrices ...

$$= \left[\begin{array}{c} e(n|n) \\ \bar{e}(n-1|n) \end{array} \right]$$

Quantities with a bar indicating the uppermost L-1 elements of the corresponding quantities (without the bar):

$$\boldsymbol{e}(n|n) = \left[egin{array}{c} e(n|n) \ ar{m{e}}(n-1|n) \end{array}
ight], \qquad \boldsymbol{y}(n) = \left[egin{array}{c} y(n) \ ar{m{y}}(n-1) \end{array}
ight], \qquad \boldsymbol{X}(n) = \left[m{x}(n) \ ar{m{X}}(n-1)
ight].$$

Fast computation of the error vector – continued:

□ Furthermore the *a posteriori error vector* can also be rewritten:

$$\begin{split} \boldsymbol{e}(n-1|n) &= \boldsymbol{y}(n-1) - \boldsymbol{X}^{\mathrm{T}}(n-1)\,\hat{\boldsymbol{h}}(n) \\ & \dots \text{ inserting } \hat{\boldsymbol{h}}(n) = \hat{\boldsymbol{h}}(n-1) + \Delta \boldsymbol{h}(n-1) \text{ and using the definition of the error vector } \dots \\ &= \boldsymbol{e}(n-1,n-1) - \boldsymbol{X}^{\mathrm{T}}(n-1)\,\boldsymbol{\Delta}\hat{\boldsymbol{h}}(n-1) \\ & \dots \text{ inserting the AP update rule } \boldsymbol{\Delta}\hat{\boldsymbol{h}}(n) = \mu\,\boldsymbol{X}(n-1)\left[\boldsymbol{X}^{\mathrm{T}}(n-1)\,\boldsymbol{X}(n-1) + \boldsymbol{\Delta}\right]^{-1}\boldsymbol{e}(n-1|n-1)\,\dots \\ &= \boldsymbol{e}(n-1,n-1) - \mu\,\boldsymbol{X}^{\mathrm{T}}(n-1)\,\boldsymbol{X}(n-1)\left[\boldsymbol{X}^{\mathrm{T}}(n-1)\,\boldsymbol{X}(n-1) + \boldsymbol{\Delta}\boldsymbol{I}\right]^{-1}\boldsymbol{e}(n-1,n-1) \\ & \dots \text{ assuming a small regularization parameter }\dots \end{split}$$

$$\approx (1-\mu) \boldsymbol{e}(n-1,n-1).$$

Combining this result and the one from the previous slide leads to:

$$\boldsymbol{e}(n|n) \approx \left[\begin{array}{c} e(n|n) \\ (1-\mu)\, \bar{\boldsymbol{e}}(n-1|n-1) \end{array}
ight].$$

From Affine Projection to Fast Affine Projection

Fast computation of the error vector – continued:

- □ Comparing both versions shows the complexity reduction:
 - **Original version**:

 $\boldsymbol{e}(n|n) = \boldsymbol{y}(n) - \boldsymbol{X}^{\mathrm{T}}(n)\,\boldsymbol{\hat{h}}(n).$

 $e(n|n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \hat{\boldsymbol{h}}(n),$

□ *Approximated* version:

N x L additions, N x L multiplications

Computational complexity

Reduction by a factor L!

 $e(n|n) \approx \left[\begin{array}{c} e(n|n) \\ (1-\mu) \,\overline{e}(n-1|n-1) \end{array} \right] \cdot$

Fast computation of the coefficient update:

□ Rearranging the equation for *updating* the coefficient vector in an iterative manner:

$$\hat{\boldsymbol{h}}(n+1) = \hat{\boldsymbol{h}}(0) + \mu \sum_{i=0}^{n} \boldsymbol{X}(n-i) \boldsymbol{e}_{\text{norm}}(n-i|n-i)$$

... splitting the excitation signal matrix $X(n) = \begin{bmatrix} x(n), x(n-1), ..., x(n-L+1) \end{bmatrix}$ and the normalized error vector $e_{norm}(n) = \begin{bmatrix} e_{norm,0}(n|n), e_{norm,1}(n|n), ..., e_{norm,L-1}(n|n) \end{bmatrix}^{T}$...

$$= \hat{h}(0) + \mu \sum_{i=0}^{n} \sum_{j=0}^{L-1} x(n-i-j) e_{\text{norm},j}(n-i|n-i).$$

From Affine Projection to Fast Affine Projection

Fast computation of the coefficient update – continued:

□ Result from the *last slide*:

$$\hat{h}(n+1) = \hat{h}(0) + \mu \sum_{i=0}^{n} \sum_{j=0}^{L-1} x(n-i-j) e_{\operatorname{norm},j}(n-i|n-i).$$

Rearranging the individual terms for n = 7, L = 3 (as an example):

$$\begin{split} \hat{\boldsymbol{h}}(7) &= \ \hat{\boldsymbol{h}}(0) + \mu & \left[\begin{array}{ccc} \boldsymbol{x}(6) \, e_{\operatorname{norm},0}(6|6) &+ & \boldsymbol{x}(5) \, e_{\operatorname{norm},1}(6|6) &+ & \boldsymbol{x}(4) \, e_{\operatorname{norm},2}(6|6) \\ &+ & \boldsymbol{x}(5) \, e_{\operatorname{norm},0}(5|5) &+ & \boldsymbol{x}(4) \, e_{\operatorname{norm},1}(5|5) \\ &+ & \boldsymbol{x}(4) \, e_{\operatorname{norm},0}(4|4) &+ & \boldsymbol{x}(2) \, e_{\operatorname{norm},2}(5|5) \\ &+ & \boldsymbol{x}(3) \, e_{\operatorname{norm},0}(3|3) &+ & \boldsymbol{x}(2) \, e_{\operatorname{norm},1}(3|3) &+ & \boldsymbol{x}(1) \, e_{\operatorname{norm},2}(3|3) \\ &+ & \boldsymbol{x}(2) \, e_{\operatorname{norm},0}(2|2) &+ & \boldsymbol{x}(1) \, e_{\operatorname{norm},1}(2|2) &+ & \boldsymbol{x}(0) \, e_{\operatorname{norm},2}(2|2) \\ &+ & \boldsymbol{x}(1) \, e_{\operatorname{norm},0}(1|1) &+ & \boldsymbol{x}(0) \, e_{\operatorname{norm},1}(1|1) \\ &+ & \boldsymbol{x}(0) \, e_{\operatorname{norm},0}(0|0) &+ & \boldsymbol{x}(-1) \, e_{\operatorname{norm},2}(1|1) \\ && \boldsymbol{x}(-1) \, e_{\operatorname{norm},1}(0|0) &+ & \boldsymbol{x}(-2) \, e_{\operatorname{norm},2}(0|0) \end{split}$$

From Affine Projection to Fast Affine Projection

Fast computation of the coefficient update – continued:

□ Result from the *last slide*:

Fast computation of the coefficient update – continued:

□ Result from the *last slide*:

We assume that all excitation signal with

A negative index are zero (the excitation "starts" at n = 0).

Fast computation of the coefficient update – continued:

□ Result from the *last slide*:

A negative index are zero (the excitation "starts" at n = 0).

Fast computation of the coefficient update – continued:

□ Rewriting the result of the *last slide*:

$$\hat{h}(7) = \hat{h}(0) + \mu \begin{bmatrix} x(6) e_{\text{norm},0}(6|6) + x(5) e_{\text{norm},1}(6|6) + x(4) e_{\text{norm},2}(6|6) \\ + x(5) e_{\text{norm},0}(5|5) + x(4) e_{\text{norm},1}(5|5) \\ + x(4) e_{\text{norm},0}(4|4) \\ & + x(3) e_{\text{norm},0}(4|4) \\ + x(3) e_{\text{norm},0}(3|3) + x(2) e_{\text{norm},1}(3|3) + x(1) e_{\text{norm},2}(3|3) \\ + x(2) e_{\text{norm},0}(2|2) + x(1) e_{\text{norm},1}(2|2) + x(0) e_{\text{norm},2}(2|2) \\ + x(1) e_{\text{norm},0}(1|1) + x(0) e_{\text{norm},1}(1|1) \\ + x(0) e_{\text{norm},0}(0|0) \end{bmatrix}].$$

$$\hat{h}(n+1) = \hat{h}(0) + \mu \sum_{k=0}^{L-1} x(n-k) \sum_{j=0}^{k} e_{\text{norm},j}(n-k+j|n-k+j) \\ + \mu \sum_{k=L}^{n} x(n-k) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-k+j|n-k+j)$$

Digital Signal Processing and System Theory | Gerhard Schmidt | Adaptive Filters | Fast Affine Projection

Fast computation of the coefficient update – continued:

□ Rearranging the update equation and inserting abbreviations:

$$\hat{\mathbf{h}}(n+1) = \hat{\mathbf{h}}(0) + \mu \sum_{k=0}^{L-1} \mathbf{x}(n-k) \sum_{j=0}^{k} e_{\text{norm},j}(n-k+j|n-k+j) + \mu \sum_{k=L}^{n} \mathbf{x}(n-k) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-k+j|n-k+j)$$

$$\dots \text{ exchanging the order of the last two terms...}$$

$$\hat{\mathbf{h}}(n+1) = \hat{\mathbf{h}}(0) + \mu \sum_{k=L}^{n} \mathbf{x}(n-k) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-k+j|n-k+j) + \mu \sum_{k=0}^{L-1} \mathbf{x}(n-k) \sum_{j=0}^{k} e_{\text{norm},j}(n-k+j|n-k+j)$$

$$\dots \text{ inserting abbreviations for the first two and the last term ...}$$

$$\hat{\mathbf{h}}(n+1) = \underbrace{\hat{\mathbf{h}}(0) + \mu \sum_{k=L}^{n} \mathbf{x}(n-k) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-k+j|n-k+j)}_{\hat{\mathbf{h}}_{\text{pre}}(n+1)} + \mu \sum_{k=0}^{L-1} \mathbf{x}(n-k) \sum_{j=0}^{k} e_{\text{norm},j}(n-k+j|n-k+j)$$

$$\dots \text{ writing the update equation compactly ...}$$

$$\hat{\mathbf{h}}(n+1) = \widehat{\mathbf{h}}_{\text{pre}}(n+1) + \mu \mathbf{X}(n) e_{\text{norm},\text{acc}}(n)$$

Fast computation of the coefficient update – continued:

Definition of the accumulated error vector that is used in the update equation:

$$\boldsymbol{e}_{\text{norm,acc}}(n) = \begin{bmatrix} e_{\text{norm},0}(n|n) \\ e_{\text{norm},1}(n|n) + e_{\text{norm},0}(n-1|n-1) \\ e_{\text{norm},2}(n|n) + e_{\text{norm},1}(n-1|n-1) + e_{\text{norm},0}(n-2|n-2) \\ \vdots \\ e_{\text{norm},L-1}(n|n) + e_{\text{norm},L-2}(n-1|n-1) + \ldots + e_{\text{norm},0}(n-L+1|n-L+1) \end{bmatrix}$$

□ Exploiting that this vector can be computed/updated recursively:

$$\boldsymbol{e}_{\mathrm{norm,acc}}(n) = \boldsymbol{e}_{\mathrm{norm}}(n|n) + \begin{bmatrix} 0\\ \bar{\boldsymbol{e}}_{\mathrm{norm,acc}}(n-1) \end{bmatrix}$$

Fast computation of the coefficient update – continued:

After a small amount of steps you will see, that $\hat{h}(n)$ is not required any more. To see this we start with the definition of the scalar error signal:

$$e(n|n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}(n)$$

 \Box Here we can insert our new findings for the update equation $\hat{h}(n+1) = \hat{h}_{pre}(n+1) + \mu X(n) e_{norm,acc}(n)$:

$$e(n|n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \hat{\boldsymbol{h}}(n)$$

... inserting the new update equation ...

$$= y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \left[\hat{\boldsymbol{h}}_{\mathrm{pre}}(n) + \mu \boldsymbol{X}(n-1) \, \boldsymbol{e}_{\mathrm{norm,acc}}(n-1) \right]$$

... simplification ...

$$= y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \hat{\boldsymbol{h}}_{\mathrm{pre}}(n) - \mu \, \boldsymbol{x}^{\mathrm{T}}(n-1) \, \boldsymbol{X}(n-1) \, \boldsymbol{e}_{\mathrm{norm,acc}}(n-1)$$

C A U Christian-Albrechts-Universität zu Kiel

From Affine Projection to Fast Affine Projection

Fast computation of the coefficient update – continued:

□ Result from the *last slide*:

 $e(n|n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}_{\mathrm{pre}}(n) - \mu \, \boldsymbol{x}^{\mathrm{T}}(n-1) \, \boldsymbol{X}(n-1) \, \boldsymbol{e}_{\mathrm{norm,acc}}(n-1)$

□ Here an *autocorrelation-like vector* that can be computed recursively can be inserted:

$$\hat{\boldsymbol{s}}_{xx}(n) = \hat{\boldsymbol{s}}_{xx}(n-1) + x(n) \boldsymbol{x}_{\text{short}}(n) - x(n-N) \boldsymbol{x}_{\text{short}}(n-N)$$

with the vector $oldsymbol{x}_{\mathrm{short}}(n)$ being defined as:

$$\boldsymbol{x}_{\text{short}}(n) = \left[x(n), x(n-1), ..., x(n-L+1) \right]^{\mathrm{T}}$$

□ *Inserting* this, we obtain:

$$e(n|n) = y(n) - \boldsymbol{x}^{\mathrm{T}}(n) \, \boldsymbol{\hat{h}}_{\mathrm{pre}}(n) - \mu \, \boldsymbol{\hat{s}}_{xx}^{\mathrm{T}}(n-1) \, \boldsymbol{e}_{\mathrm{norm,acc}}(n-1)$$

Included in the recursive computation of the norm.

Now we have only the product of two (short, size L) vectors, instead of the (large, size N) vector-matrix-vector product.

(1)

From Affine Projection to Fast Affine Projection

Fast computation of the coefficient update – continued:

 \Box Finally, we look again at the definition of $\hat{h}_{pre}(n)$:

$$\hat{h}_{\text{pre}}(n+1) = \hat{h}(0) + \mu \sum_{k=L}^{n} x(n-k) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-k+j|n-k+j)$$

$$= \hat{h}(0) + \mu x(n-L) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-L+j|n-L+j) + \mu \sum_{k=L+1}^{n} x(n-k) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-k+j|n-k+j)$$

□ When comparing the term (1) with the first line of the equation above, one finds:

□ Inserting this result leads to:

$$\hat{h}_{\text{pre}}(n+1) = \hat{h}_{\text{pre}}(n) + \mu x(n-L) \sum_{j=0}^{L-1} e_{\text{norm},j}(n-L+j|n-L+j)$$

Digital Signal Processing and System Theory | Gerhard Schmidt | Adaptive Filters | Fast Affine Projection

Fast computation of the matrix inversion:

□ In the original version of the FAP algorithm, also a fast version of the inversion of an autocorrelation matrix was proposed:

$$\boldsymbol{e}_{\mathrm{norm}}(n) = \left[\boldsymbol{X}^{\mathrm{T}}(n) \, \boldsymbol{X}(n) + \Delta \, \boldsymbol{I} \right]^{-1} \boldsymbol{e}(n)$$

□ However, since we use affine projection algorithms usually only for projection order of 2 ... 4, we omit this step over here.

□ For Interested students it's recommended to have a look into the dissertation of Steven L. Grant.

Contents:

Introduction

□ Affine projection and NLMS

Basic equations

- □ Convergence speed
- Complexity
- □ From affine projection to fast affine projection
 - □ Fast computation of the error vector
 - □ Fast computation of the coefficient update
 - Matrix inversion

Final remarks

Steven L. Grant (AKA Gay) [Photo Maria Grant]

Final Remarks

Fast affine projection equations:

$\widehat{\boldsymbol{S}}_{xx}(n) = \widehat{\boldsymbol{S}}_{xx}(n-1) + \boldsymbol{x}_{\text{short}}^{\text{T}}(n) \, \boldsymbol{x}_{\text{short}}(n) - \boldsymbol{x}_{\text{short}}^{\text{T}}(n-N) \, \boldsymbol{x}_{\text{short}}(n-N) \\ \widehat{d}(n) = \boldsymbol{x}^{\text{T}}(n) \, \widehat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \, \widehat{\boldsymbol{s}}_{xx}^{\text{T}}(n-1) \, \boldsymbol{e}_{\text{norm,acc}}(n-1)$

Error signal

$$e(n|n) = y(n) - \hat{d}(n)$$

$$e(n|n) = \begin{bmatrix} e(n|n) \\ (1-\mu) \overline{e}(n-1|n-1) \end{bmatrix}.$$

□ Normalization

$$\boldsymbol{e}_{\text{norm}}(n|n) = \left[\boldsymbol{\hat{S}}_{xx}(n) + \Delta \boldsymbol{I}\right]^{-1} \boldsymbol{e}(n|n)$$
$$\boldsymbol{e}_{\text{norm,acc}}(n) = \boldsymbol{e}_{\text{norm}}(n|n) + \left[\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{\bar{e}}_{\text{norm,acc}}(n-1) \end{array}\right]$$

Gilter update

$$\hat{\boldsymbol{h}}_{\text{pre}}(n+1) = \hat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \boldsymbol{x}(n-L) e_{\text{norm}, \text{acc}, L-1}(n-1)$$

Final Remarks

Fast affine projection equations:

□ Filtering

$$\hat{\boldsymbol{S}}_{xx}(n) = \hat{\boldsymbol{S}}_{xx}(n-1) + \boldsymbol{x}_{\text{short}}^{\text{T}}(n) \, \boldsymbol{x}_{\text{short}}(n) - \boldsymbol{x}_{\text{short}}^{\text{T}}(n-N) \, \boldsymbol{x}_{\text{short}}(n-N) \\ \hat{d}(n) = \boldsymbol{x}^{\text{T}}(n) \, \hat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \, \hat{\boldsymbol{s}}_{xx}^{\text{T}}(n-1) \, \boldsymbol{e}_{\text{norm,acc}}(n-1)$$

Error signal

$$e(n|n) = y(n) - \hat{d}(n)$$

$$e(n|n) = \begin{bmatrix} e(n|n) \\ (1-\mu)\bar{e}(n-1|n-1) \end{bmatrix}$$

□ Normalization

$$\boldsymbol{e}_{\text{norm}}(n|n) = \left[\boldsymbol{\hat{S}}_{xx}(n) + \Delta \boldsymbol{I}\right]^{-1} \boldsymbol{e}(n|n)$$
$$\boldsymbol{e}_{\text{norm,acc}}(n) = \boldsymbol{e}_{\text{norm}}(n|n) + \left[\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{\bar{e}}_{\text{norm,acc}}(n-1) \end{array}\right]$$

Gilter update

$$\hat{\boldsymbol{h}}_{\text{pre}}(n+1) = \hat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \boldsymbol{x}(n-L) e_{\text{norm}, \text{acc}, L-1}(n-1)$$

Complexity AP (approx.):

 $\begin{array}{l} 2NL+3L^2+L^3\,\approx\,2NL \ \text{add.,}\\ 2NL+3L^2+L^3\,\approx\,2NL \ \text{mul.} \end{array}$

Example:
$f_{\rm s} = 48{\rm kHz}$
N = 12000
L = 4
4.6 billion additions per second,
4.6 billion multiplic. per second

Final Remarks

Fast affine projection equations: *Complexity AP (approx.):* $2NL + 3L^2 + L^3 \approx 2NL$ add... **G** Filtering $2NL + 3L^2 + L^3 \approx 2NL$ mul. $\hat{\boldsymbol{S}}_{xx}(n) = \hat{\boldsymbol{S}}_{xx}(n-1) + \boldsymbol{x}_{\text{short}}^{\text{T}}(n) \boldsymbol{x}_{\text{short}}(n) - \boldsymbol{x}_{\text{short}}^{\text{T}}(n-N) \boldsymbol{x}_{\text{short}}(n-N)$ $\hat{d}(n) = \boldsymbol{x}^{\mathrm{T}}(n) \, \hat{\boldsymbol{h}}_{\mathrm{pre}}(n) + \mu \, \hat{\boldsymbol{s}}_{xx}^{\mathrm{T}}(n-1) \, \boldsymbol{e}_{\mathrm{norm,acc}}(n-1)$ **C** Error signal Computational complexity $e(n|n) = y(n) - \hat{d}(n)$ $\boldsymbol{e}(n|n) = \left[\begin{array}{c} \boldsymbol{e}(n|n) \\ (1-\mu)\,\boldsymbol{\bar{e}}(n-1|n-1) \end{array} \right].$ $2 \times L^2$ additions, $2 \times L^2$ multiplications N+L additions, N+L multiplications □ Normalization 1 addition, 0 multiplications $\boldsymbol{e}_{\mathrm{norm}}(n|n) = \left[\hat{\boldsymbol{S}}_{xx}(n) + \Delta \boldsymbol{I} \right]^{-1} \boldsymbol{e}(n|n)$ L additions, L multiplications $\boldsymbol{e}_{\text{norm,acc}}(n) = \boldsymbol{e}_{\text{norm}}(n|n) + \begin{bmatrix} 0 \\ \bar{\boldsymbol{e}}_{\text{norm acc}}(n-1) \end{bmatrix}$ L² additions, L² multiplications 1 inversion (L³ mult., L³ add.) **Gilter update** 0 multiplications Ladditions, $\hat{\boldsymbol{h}}_{\text{pre}}(n+1) = \hat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \boldsymbol{x}(n-L) e_{\text{norm.acc},L-1}(n-1) \checkmark$ N additions, N multiplications

Final Remarks

Fast affine projection equations:

□ Filtering

$$\hat{\boldsymbol{S}}_{xx}(n) = \hat{\boldsymbol{S}}_{xx}(n-1) + \boldsymbol{x}_{\text{short}}^{\text{T}}(n) \, \boldsymbol{x}_{\text{short}}(n) - \boldsymbol{x}_{\text{short}}^{\text{T}}(n-N) \, \boldsymbol{x}_{\text{short}}(n-N) \\ \hat{\boldsymbol{d}}(n) = \boldsymbol{x}^{\text{T}}(n) \, \hat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \, \hat{\boldsymbol{s}}_{xx}^{\text{T}}(n-1) \, \boldsymbol{e}_{\text{norm,acc}}(n-1)$$

Error signal

$$e(n|n) = y(n) - \hat{d}(n)$$

$$e(n|n) = \begin{bmatrix} e(n|n) \\ (1-\mu) \bar{e}(n-1|n-1) \end{bmatrix}$$

D Normalization

$$\boldsymbol{e}_{\text{norm}}(n|n) = \left[\boldsymbol{\hat{S}}_{xx}(n) + \Delta \boldsymbol{I}\right]^{-1} \boldsymbol{e}(n|n)$$
$$\boldsymbol{e}_{\text{norm,acc}}(n) = \boldsymbol{e}_{\text{norm}}(n|n) + \left[\begin{array}{c} \boldsymbol{0} \\ \boldsymbol{\bar{e}}_{\text{norm,acc}}(n-1) \end{array}\right]$$

Gilter update

$$\hat{\boldsymbol{h}}_{\text{pre}}(n+1) = \hat{\boldsymbol{h}}_{\text{pre}}(n) + \mu \boldsymbol{x}(n-L) e_{\text{norm},\text{acc},L-1}(n-1)$$

Complexity AP (approx.):

 $2NL + 3L^2 + L^3 \approx 2NL \text{ add.,}$ $2NL + 3L^2 + L^3 \approx 2NL \text{ mul.}$

Complexity FAP (approx.): $2N + 3L + 3L^{2} + L^{3} \approx 2N \text{ add.,}$ $2N + 2L + 3L^{2} + L^{3} \approx 2N \text{ mul.}$

Example:

 $f_{\rm s} = 48 \, {\rm kHz} \ N = 12000 \ L = 4$

AP: 4.6 billion ops. per secondFAP: 1.2 billion ops. per second

Summary and Outlook

This week and last week:

- □ Introductory Remarks
- □ Recursive Least Squares (RLS) Algorithm
- □ Least Mean Square Algorithm (LMS Algorithm) Part 1
- □ Least Mean Square Algorithm (LMS Algorithm) Part 2
- □ Affine Projection Algorithm (AP Algorithm)
- □ Fast Affine Projection Algorithm (FAP Algorithm)

Next part:

Control of Adaptive Filters

