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•

Contents of the Lecture

Adaptive Algorithms:

❑ Introductory Remarks

❑ Recursive Least Squares (RLS) Algorithm

❑ Least Mean Square Algorithm (LMS Algorithm) – Part 1

❑ Least Mean Square Algorithm (LMS Algorithm) – Part 2

❑ Affine Projection Algorithm (AP Algorithm)

❑ Fast Affine Projection Algorithm (FAP Algorithm)

Today
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Least Mean Square (LMS) Algorithm

Geometrical Explanation of Convergence – Part 1

System:

System output:

Structure:

Unknown system

Adaptive
filter
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Least Mean Square (LMS) Algorithm

Geometrical Explanation of Convergence – Part 2

Error signal:

Difference vector:

LMS algorithm:
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Least Mean Square (LMS) Algorithm

Geometrical Explanation of Convergence – Part 3

The vector             will be split into two components:

It applies to parallel components:

With:
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Least Mean Square (LMS) Algorithm

Geometrical Explanation of Convergence – Part 4

Contraction of the system error vector:

… result obtained two slides before …

… splitting the system error vector …

… using                                      and that             is orthogonal to           …

… this results in …       
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Least Mean Square (LMS) Algorithm

NLMS Algorithm – Part 1

Normalized LMS algorithm:

LMS algorithm:

Unknown system

Adaptive
filter



•

Digital Signal Processing and System Theory | Adaptive Filters | Algorithms – Part 2 Slide 8

Least Mean Square (LMS) Algorithm

NLMS Algorithm – Part 2

Adaption (in general):

A priori error:

A posteriori error:

A successful adaptation requires

or:
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Least Mean Square (LMS) Algorithm

NLMS Algorithm – Part 3

Condition:

Ansatz:

Convergence condition:

Inserting the update equation:
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Least Mean Square (LMS) Algorithm

NLMS Algorithm – Part 4

Condition:

Ansatz:

Step size requirement for the NLMS algorithm (after a few lines …):

For comparison with LMS algorithm:

or
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Least Mean Square (LMS) Algorithm

NLMS Algorithm – Part 5

Ansatz:

Adaptation rule for the NLMS algorithm:
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Least Mean Square (LMS) Algorithm

Matlab-Demo: Speed of Convergence
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Least Mean Square (LMS) Algorithm

Convergence Examples – Part 1

White noise:

Setup:
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Least Mean Square (LMS) Algorithm

Convergence Examples – Part 2

Setup:

Colored noise:
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Contents of the Lecture

Today

Adaptive Algorithms:

❑ Introductory Remarks

❑ Recursive Least Squares (RLS) Algorithm

❑ Least Mean Square Algorithm (LMS Algorithm) – Part 1

❑ Least Mean Square Algorithm (LMS Algorithm) – Part 2

❑ Affine Projection Algorithm (AP Algorithm)

❑ Fast Affine Projection Algorithm (FAP Algorithm)
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Affine Projection Algorithm

Basics

Signal matrix:

Signal vector:

Filter vector:

Filter output:

L describes the order of the procedure

Unknown system
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Affine Projection Algorithm

Signal Matrix

Definition of the signal matrix:
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Affine Projection Algorithm

Error Vector – Part 1

Signal matrix:

Desired signal vector:

Filter output vector:

A priori error vector:

Adaption rule:

A posteriori error vector:
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Affine Projection Algorithm

Error Vector – Part 2

Requirement:

Requirement:
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Affine Projection Algorithm

Ansatz

Requirement:

Ansatz:

Step-size condition:
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Affine Projection Algorithm

Geometrical Interpretation

NLMS algorithm AP algorithm
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Affine Projection Algorithm

Regularization

Regularised version of the AP algorithm:

Non-regularised version of the AP algorithm:



•

Digital Signal Processing and System Theory | Adaptive Filters | Algorithms – Part 2 Slide 23

Affine Projection Algorithm

Convergence of Different Algorithms – Part 1

White noise:
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Affine Projection Algorithm

Convergence of Different Algorithms – Part 2

White noise:



•

Digital Signal Processing and System Theory | Adaptive Filters | Algorithms – Part 2 Slide 25

Affine Projection Algorithm

Convergence of Different Algorithms – Part 3

Colored noise
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Affine Projection Algorithm

Convergence of Different Algorithms – Part 4

Colored noise:
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Affine Projection Algorithm

Convergence of Different Algorithms – Part 5

Speech:
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Affine Projection Algorithm

Convergence of Different Algorithms – Part 6

Speech:
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Adaptive Filters – Algorithms

Summary and Outlook

This week and last week:

❑ Introductory Remarks

❑ Recursive Least Squares (RLS) Algorithm

❑ Least Mean Square Algorithm (LMS Algorithm) – Part 1

❑ Least Mean Square Algorithm (LMS Algorithm) – Part 2

❑ Affine Projection Algorithm (AP Algorithm)

❑ Fast Affine Projection Algorithm (FAP Algorithm)

Next part:

❑ Control of Adaptive Filters
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Fast Affine Projection

❑ Introduction

❑ Affine projection and NLMS

❑ Basic equations

❑ Convergence speed 

❑ Complexity

❑ From affine projection to fast affine projection

❑ Fast computation of the error vector

❑ Fast computation of the coefficient update

❑ Matrix inversion

❑ Final remarks

Contents:
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Introduction

Fast Affine Projection

❑ Until now we have mainly focused on direct 
implementations of adaptive algorithms.

❑ Usually, we found that the more robust (e.g. in terms 
on independence on the input statistics) an algorithms is,
the more expensive (e.g. in terms of multiplications and 
additions) it is.

Fast version of adaptive algorithms:
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Introduction

Fast Affine Projection

❑ Until new we have mainly focused on direct 
implementations of adaptive algorithms.

❑ Usually, we found that the more robust (e.g. in terms 
on independence on the input statistics) an algorithms is,
the more expensive (e.g. in terms of multiplications and 
additions) it is.

❑ Now we will focus on so-called fast versions of algorithms.

❑ These fast versions exist for virtually all algorithms.

❑ The problem is often, that numerical stability is not easy to 
achieve.

❑ We will focus now on a fast version of the fast affine 
projection algorithm, shorty called FAP. 

Fast version of adaptive algorithms:
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Introduction

Fast Affine Projection

Steven L. Grant (AKA Gay, together with 
his wife Maria), picture made at 

ICASSP Brisbane, 2015 [Photo G. Elko]

❑ Invented by Steve(n) L. Grant (AKA Gay) at Bell Labs in 1995.

❑ A very interesting algorithm, since it combines RLS-like speed for
colored signals with LMS-like complexity.

❑ Steve was (unfortunately, he died a couple of years ago) a very
nice guy, and the upcoming slides are dedicated to him: “To Steve, 
a great, clever and smart researcher with a big friendly heart”. 

Fast version of adaptive algorithms:
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Fast Affine Projection

❑ Introduction

❑ Affine projection and NLMS

❑ Basic equations

❑ Convergence speed 

❑ Complexity

❑ From affine projection to fast affine projection

❑ Fast computation of the error vector

❑ Fast computation of the coefficient update

❑ Matrix inversion

❑ Final remarks

Contents:

Steven L. Grant (AKA Gay, together with 
Peter Eneroth [left], Tomas Gänsler [third] and 

Jacob Benesty [right]), picture made at 
ICASSP Seattle, 1998 [Photo Maria Grant]
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❑ Computation of the error signal

❑ Norm of the excitation vector

❑ Normalization of the error signal

❑ Coefficient update

NLMS versus Affine Projection

Fast Affine Projection

Basic NLMS equations:
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NLMS versus Affine Projection

Fast Affine Projection

Basic NLMS equations:

❑ Computation of the error signal

❑ Norm of the excitation vector

❑ Normalization of the error signal

❑ Coefficient update

Computational complexity

N additions, 
N multiplications

2 additions, 
2 multiplications

N additions, 
N multiplications

1 addition, 
1 multiplication, 
1 division
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NLMS versus Affine Projection

Fast Affine Projection

Basic NLMS equations:

❑ Computation of the error signal

❑ Norm of the excitation vector

❑ Normalization of the error signal

❑ Coefficient update

Computational complexity

N additions, 
N multiplications

2 additions, 
2 multiplications

N additions, 
N multiplications

1 addition, 
1 multiplication, 
1 division

Complexity NLMS:

additions, 
multiplications,

division

Example:

1.2 billion additions per second, 
1.2 billion multiplic. per second,
48.000 divisions per second
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Long and Short Excitation Vectors

Fast Affine Projection

Excitation vector definitions:

❑ Conventional excitation vector

❑ Short excitation vector (usually contained in conventional excitation vector)
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NLMS versus Affine Projection (Continued)

Fast Affine Projection

Basic affine projection equations:

❑ Computation of the error signal vector

❑ Normalization matrix

❑ Normalization of the error vector

❑ Coefficient update

Basic NLMS equations (for comparison):

❑ Computation of the error signal

❑ Norm of the excitation vector

❑ Normalization of the error signal

❑ Coefficient update
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NLMS versus Affine Projection (Continued)

Fast Affine Projection

Basic affine projection equations:

❑ Computation of the error signal vector

❑ Normalization matrix

❑ Normalization of the error vector

❑ Coefficient update

Computational complexity

N x L additions, 
N x L multiplications

2 x L² additions, 
2 x L² multiplications

L² additions, 
L² multiplications, 
1 inversion (L³ mult., 

L³ add.)

N x L additions, 
N x L multiplications
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NLMS versus Affine Projection (Continued)

Fast Affine Projection

Basic affine projection equations:

❑ Computation of the error signal vector

❑ Normalization matrix

❑ Normalization of the error vector

❑ Coefficient update

Computational complexity

N x L additions, 
N x L multiplications

2 x L² additions, 
2 x L² multiplications

L² additions, 
L² multiplications, 
1 inversion (L³ mult., 

L³ add.)

N x L additions, 
N x L multiplications

Complexity AP (approx.):

add., 
mul.

Example:

4.6 billion additions per second, 
4.6 billion multiplic. per second
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NLMS versus Affine Projection (Continued)

Fast Affine Projection

Basic affine projection equations:

❑ Computation of the error signal vector

❑ Normalization matrix

❑ Normalization of the error vector

❑ Coefficient update

Graphical visualization:
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NLMS versus Affine Projection (Continued)

Fast Affine Projection

Boundary conditions of the simulation:

❑ Excitation: white noise

❑ Local noise:  white noise

❑ SNR: 60 dB

❑ Filter length: 12000

❑ Sample rate: 48 kHz

❑ Projection order: 4
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NLMS versus Affine Projection (Continued)

Fast Affine Projection

Boundary conditions of the simulation:

❑ Excitation: colored noise

❑ Local noise:  white noise

❑ SNR: 60 dB

❑ Filter length: 12000

❑ Sample rate: 48 kHz

❑ Projection order: 4
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Fast Affine Projection

❑ Introduction

❑ Affine projection and NLMS

❑ Basic equations

❑ Convergence speed 

❑ Complexity

❑ From affine projection to fast affine projection

❑ Fast computation of the error vector

❑ Fast computation of the coefficient update

❑ Matrix inversion

❑ Final remarks

Contents:

Steven L. Grant (AKA Gay) while doing pool billiard
[Photo Maria Grant]
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❑ Rearranging the equation for computing the error vector:

❑ Quantities with a bar indicating the uppermost              elements of the corresponding quantities (without the bar):

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the error vector:

… splitting the error vector into its first element and the remaining ones …

… inserting the definitions of “shortened” vectors and matrices …
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❑ Furthermore the a posteriori error vector can also be rewritten:

❑ Combining this result and the one from the previous slide leads to:

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the error vector – continued:

… inserting                                                         and using the definition of the error vector …

… inserting the AP update rule                                                                                               …

… assuming a small regularization parameter …
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❑ Comparing both versions shows the complexity reduction:

❑ Original version:

❑ Approximated version:

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the error vector – continued:

Computational complexity

N x L additions, 
N x L multiplications

N  additions, 
N + L multiplications

Reduction by a factor L!
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❑ Rearranging the equation for updating the coefficient vector in an iterative manner:

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the coefficient update:

… splitting the excitation signal matrix 
and the normalized error vector                                                                                         …
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❑ Result from the last slide:

❑ Rearranging the individual terms for                          (as an example):

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the coefficient update – continued:
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❑ Result from the last slide:

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the coefficient update – continued:
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❑ Result from the last slide:

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the coefficient update – continued:

We assume that all excitation signal with 
A negative index are zero (the excitation “starts” at            ).
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❑ Result from the last slide:

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the coefficient update – continued:

We assume that all excitation signal with 
A negative index are zero (the excitation “starts” at            ).
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❑ Rewriting the result of the last slide:

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the coefficient update – continued:
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❑ Rearranging the update equation and inserting abbreviations:

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the coefficient update – continued:

… exchanging the order of the last two terms…

… inserting abbreviations for the first two and the last term …

… writing the update equation compactly …
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❑ Definition of the accumulated error vector that is used in the update equation:

❑ Exploiting that this vector can be computed/updated recursively:

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the coefficient update – continued:
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❑ After a small amount of steps you will see, that           is not required any more. To see this we start with the definition of
the scalar error signal:

❑ Here we can insert our new findings for the update equation                                                                  :

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the coefficient update – continued:

… inserting the new update equation …

… simplification …
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❑ Result from the last slide:

❑ Here an autocorrelation-like vector that can be computed recursively can be inserted:

with the vector                   being defined as:

❑ Inserting this, we obtain: 

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the coefficient update – continued:

Now we have only the product of
two (short, size L) vectors, instead of the 
(large, size N) vector-matrix-vector product. 

Included in the recursive computation
of the norm.
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❑ Finally, we look again at the definition of               :

❑ When comparing the term (1) with the first line of the equation above, one finds:

❑ Inserting this result leads to:

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the coefficient update – continued:

… excluding the fist element in the outer sum …
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❑ In the original version of the FAP algorithm, also a fast version of the inversion of an autocorrelation matrix was proposed:

❑ However, since we use affine projection algorithms usually only for projection order of 2 … 4, we omit this step over here.

❑ For Interested students it’s recommended to have a look into the dissertation of Steven L. Grant. 

From Affine Projection to Fast Affine Projection

Fast Affine Projection

Fast computation of the matrix inversion:
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Fast Affine Projection

❑ Introduction

❑ Affine projection and NLMS

❑ Basic equations

❑ Convergence speed 

❑ Complexity

❑ From affine projection to fast affine projection

❑ Fast computation of the error vector

❑ Fast computation of the coefficient update

❑ Matrix inversion

❑ Final remarks

Contents:

Steven L. Grant (AKA Gay)
[Photo Maria Grant]
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Final Remarks

Fast Affine Projection

Fast affine projection equations:

❑ Filtering

❑ Error signal

❑ Normalization

❑ Filter update
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Final Remarks

Fast Affine Projection

Fast affine projection equations:

❑ Filtering

❑ Error signal

❑ Normalization

❑ Filter update

Complexity AP (approx.):

add., 
mul.

Example:

4.6 billion additions per second, 
4.6 billion multiplic. per second
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Final Remarks

Fast Affine Projection

Fast affine projection equations:

❑ Filtering

❑ Error signal

❑ Normalization

❑ Filter update

Complexity AP (approx.):

add., 
mul.

Computational complexity

2 x L² additions, 2 x L² multiplications

N+L additions, N+L multiplications

1 inversion (L³ mult.,  L³ add.)

1 addition, 0 multiplications

L additions, L multiplications

L² additions, L² multiplications

L additions, 0 multiplications

N additions, N multiplications
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Final Remarks

Fast Affine Projection

Fast affine projection equations:

❑ Filtering

❑ Error signal

❑ Normalization

❑ Filter update

Complexity AP (approx.):

add., 
mul.

Complexity FAP (approx.):

add., 
mul.

Example:

4.6 billion ops. per secondAP:

1.2 billion ops. per secondFAP:
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Adaptive Filters – Algorithms

Summary and Outlook

This week and last week:

❑ Introductory Remarks

❑ Recursive Least Squares (RLS) Algorithm

❑ Least Mean Square Algorithm (LMS Algorithm) – Part 1

❑ Least Mean Square Algorithm (LMS Algorithm) – Part 2

❑ Affine Projection Algorithm (AP Algorithm)

❑ Fast Affine Projection Algorithm (FAP Algorithm)

Next part:

❑ Control of Adaptive Filters


