

Adaptive Filters – Adaptation Control

Gerhard Schmidt

Christian-Albrechts-Universität zu Kiel Faculty of Engineering Electrical Engineering and Information Technology Digital Signal Processing and System Theory

Christian-Albrechts-Universität zu Kiel

Today:

Adaptation Control:

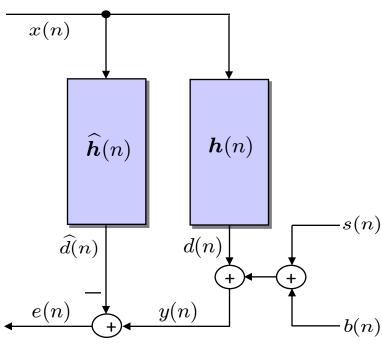
- Introduction and Motivation
- Prediction of the System Distance
- Optimum Control Parameters
- Estimation Schemes
- Examples

Basics

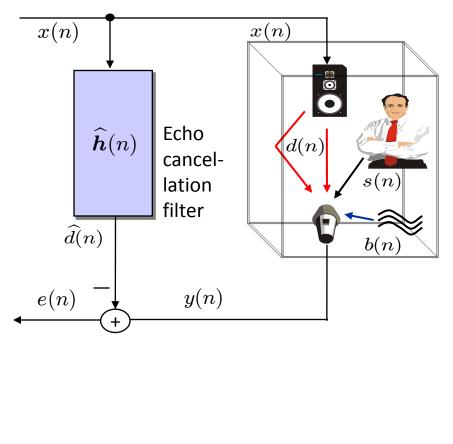
Objective:

Remove those components in the microphone signal that originate from the remote communication partner!

Model:



Application example:



Basic Approach

Model:

The loudspeaker-enclosure-microphone (LEM) system is modelled as a linear (only slowly changing) system with finite memory.

Approach:

Cancelling acoustic echoes by means of an adaptive filter with N = 1024 coefficients, operating at a sample rate $f_s = 8$ kHz. For the adaptation of the filter the NLMS algorithm should be used.

Advantages and disadvantages:

- + In contrast to former approaches (loss controls) simultaneous speech activity in both communication directions is possible now.
- + The NLMS algorithm is a robust and computationally efficient approach.
- Compared to former solutions more memory and a larger computational load are required.
- Stability can not be guaranteed.

NLMS-Algorithm

Computation of the error signal (output signal of the echo cancellation filter):

$$e(n) = y(n) - \left[x(n), x(n-1), \dots, x(n-N+1)\right] \begin{bmatrix} \hat{h}_0(n) \\ \hat{h}_1(n) \\ \vdots \\ \hat{h}_{N-1}(n) \end{bmatrix}$$

Recursive computation of the norm of the excitation signal vector $\|\boldsymbol{x}(n)\|^2 = \|\boldsymbol{x}(n-1)\|^2 - x^2(n-N) + x^2(n)$

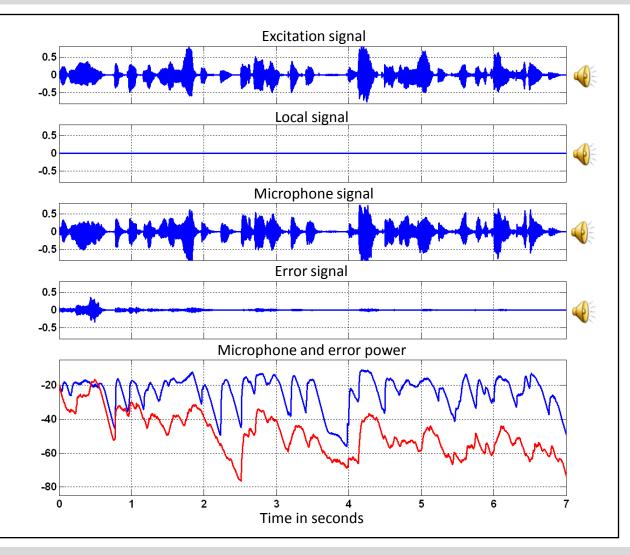
Adaptation of the filter vector:

$$\begin{bmatrix} \hat{h}_0(n+1) \\ \hat{h}_1(n+1) \\ \vdots \\ \hat{h}_{N-1}(n+1) \end{bmatrix} = \begin{bmatrix} \hat{h}_0(n) \\ \hat{h}_1(n) \\ \vdots \\ \hat{h}_{N-1}(n) \end{bmatrix} + \frac{\mu e(n)}{\left\| \boldsymbol{x}(n) \right\|^2} \begin{bmatrix} \boldsymbol{x}(n) \\ \boldsymbol{x}(n-1) \\ \vdots \\ \boldsymbol{x}(n-N+1) \end{bmatrix}$$

C|AU

Convergence Examples – Part 1

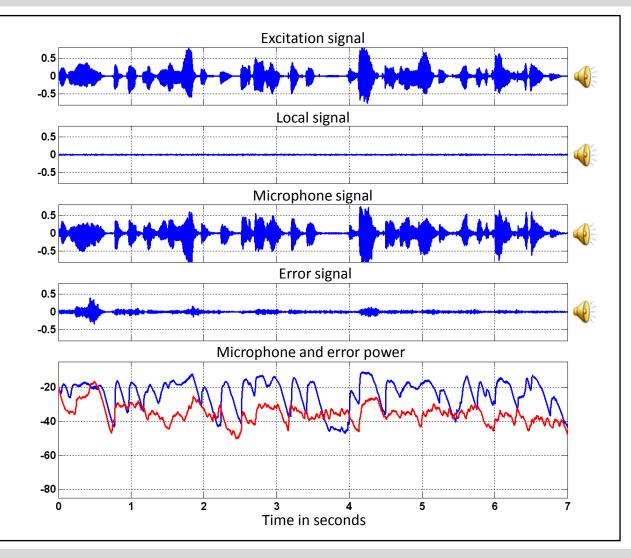
Convergence without background noise and without local speech signals



C|AU

Convergence Examples – Part 2

Convergence with background noise but without local speech signals

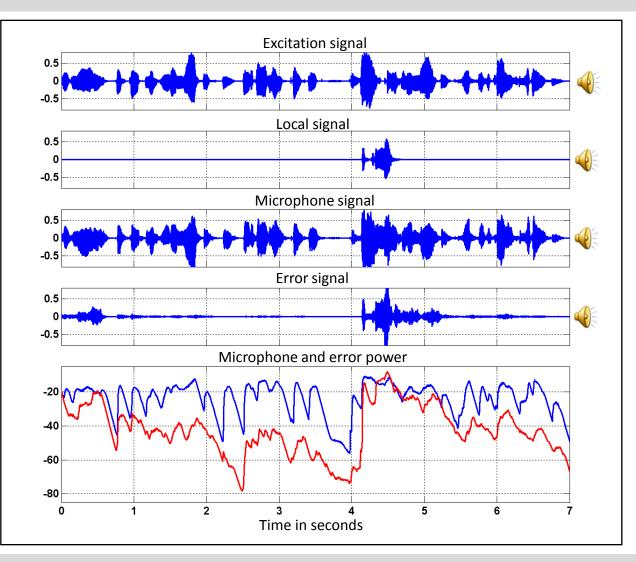


C|AU

Convergence Examples – Part 3

Convergence without background noise but with local speech signals

(*step size = 1*)

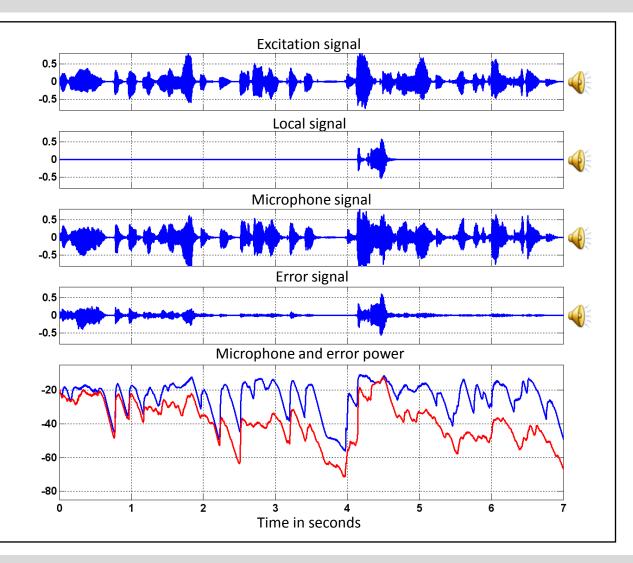


CAU

Convergence Examples – Part 4

Convergence without background noise but with local speech signals

(*step size = 0.1*)



Literature

Basic texts:

- E. Hänsler / G. Schmidt: Acoustic Echo and Noise Control Chapter 7 (Algorithms for Adaptive Filters), Wiley, 2004
- E. Hänsler / G. Schmidt: Acoustic Echo and Noise Control Chapter 13 (Control of Echo Cancellation Systems), Wiley, 2004

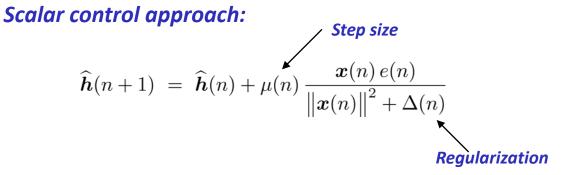
Further details:

- S. Haykin: Adaptive Filter Theory Chapter 6 (Normalized Least-Mean-Square Adaptive Filters), Prentice Hall, 2002
- C. Breining, A. Mader: Intelligent Control Strategies for Hands-Free Telephones, in E. Hänsler, G. Schmidt, Topics on Acoustic Echo and Noise Control – Chapter 8, Springer, 2006

CAU

Christian-Albrechts-Universität zu Kiel

Control Approaches – Part 1



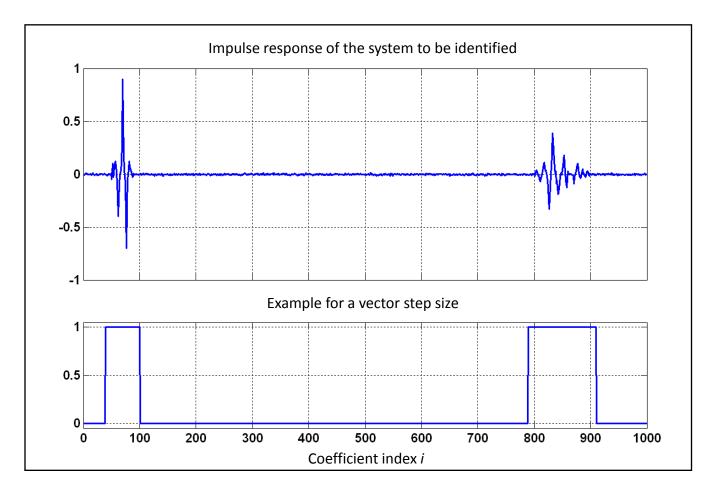
Vector control approach:

$$\widehat{h}(n+1) = \widehat{h}(n) + \begin{bmatrix} \mu_0(n) & 0 & \dots & 0 \\ 0 & \mu_1(n) & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \mu_{N-1}(n) \end{bmatrix} \frac{\mathbf{x}(n) e(n)}{\|\mathbf{x}(n)\|^2 + \Delta(n)}$$

Control Approaches – Part 2

Example for a sparse impulse response

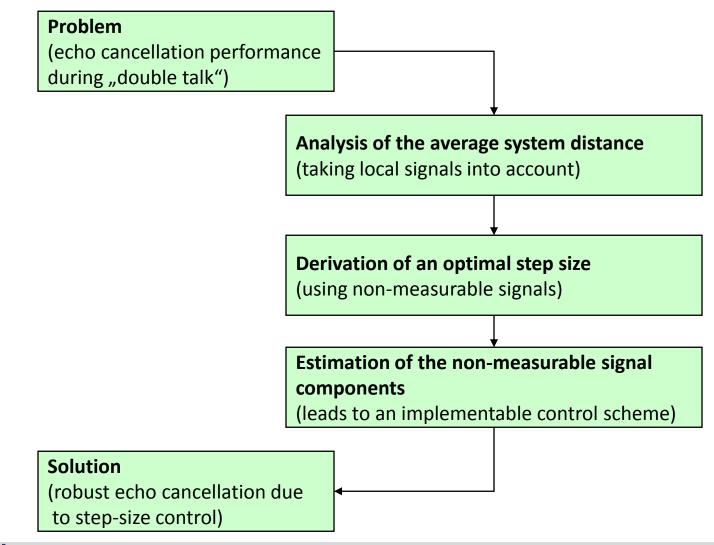
For such systems a vector based control scheme can be advantageous.



CAU

Christian-Albrechts-Universität zu Kiel

How do we go on ...



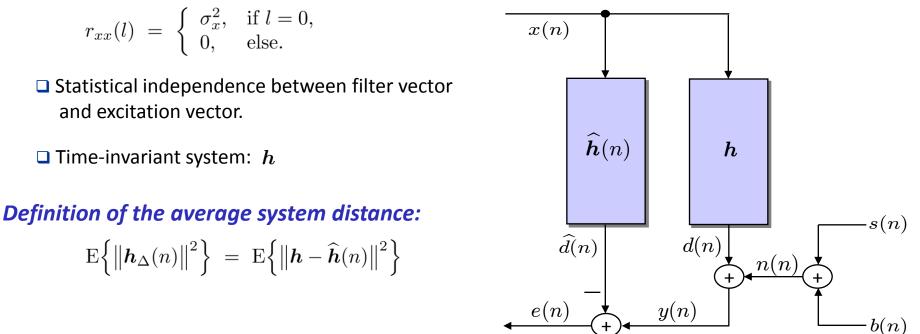
Average System Distance – Part 1

Assumptions:

□ Adaptation using the NLMS algorithm (only step-size controlled) :

$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu \frac{e(n) \boldsymbol{x}(n)}{\|\boldsymbol{x}(n)\|^2}$$

□ White noise as excitation and (stationary) distortion:



Christian-Albrechts-Universität zu Kiel

Average System Distance – Part 2

... Derivation during the lecture ...

Average System Distance – Part 3

Generic approach (control scheme with step size and regularization):

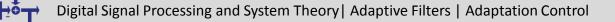
$$\widehat{\boldsymbol{h}}(n+1) = \widehat{\boldsymbol{h}}(n) + \mu \frac{\boldsymbol{x}(n) e(n)}{\|\boldsymbol{x}(n)\|^2 + \Delta}$$

Result:

$$\mathbb{E}\left\{\|\boldsymbol{h}_{\Delta}(n+1)\|^{2}\right\} \approx \underbrace{\left(1 + \frac{\mu^{2} N \sigma_{x}^{4}}{\left(N \sigma_{x}^{2} + \Delta\right)^{2}} - \frac{2 \mu \sigma_{x}^{2}}{N \sigma_{x}^{2} + \Delta}\right)}_{A(\mu, \Delta, \sigma_{x}^{2}, N)} \mathbb{E}\left\{\|\boldsymbol{h}_{\Delta}(n)\|^{2}\right\} + \underbrace{\frac{\mu^{2} N \sigma_{x}^{2}}{\left(N \sigma_{x}^{2} + \Delta\right)^{2}}}_{B(\mu, \Delta, \sigma_{x}^{2}, N)} \sigma_{n}^{2} \right\}$$

$$= A(\mu, \Delta, \sigma_{x}^{2}, N) \mathbb{E}\left\{\|\boldsymbol{h}_{\Delta}(n)\|^{2}\right\} + B(\mu, \Delta, \sigma_{x}^{2}, N) \sigma_{n}^{2}$$

$$\underbrace{Contraction parameter} \qquad Expansion parameter$$



Contraction and Expansion Parameters

$$\mathbf{E}\left\{\left\|\boldsymbol{h}_{\Delta}(n+1)\right\|^{2}\right\} \approx A\left(\mu, \Delta, \sigma_{x}^{2}, N\right) \mathbf{E}\left\{\left\|\boldsymbol{h}_{\Delta}(n)\right\|^{2}\right\} + B\left(\mu, \Delta, \sigma_{x}^{2}, N\right) \sigma_{n}^{2}$$

Contraction parameter $A(\mu, \Delta, \sigma_x^2, N)$:

□ Range:
$$1 - \frac{1}{N} \leq A(\mu, \Delta, \sigma_x^2, N) \leq \infty$$

Desired: as small as possible

Determines the speed of convergence without distortions

Expansion parameter $B(\mu, \Delta, \sigma_x^2, N)$:

$$\square$$
 Range: $0 \leq B(\mu, \Delta, \sigma_x^2, N) \leq \infty$

- Desired: as small as possible
- Determines the robustness against distortions

Opposite to each other – a common solution (optimization) Has to be found!

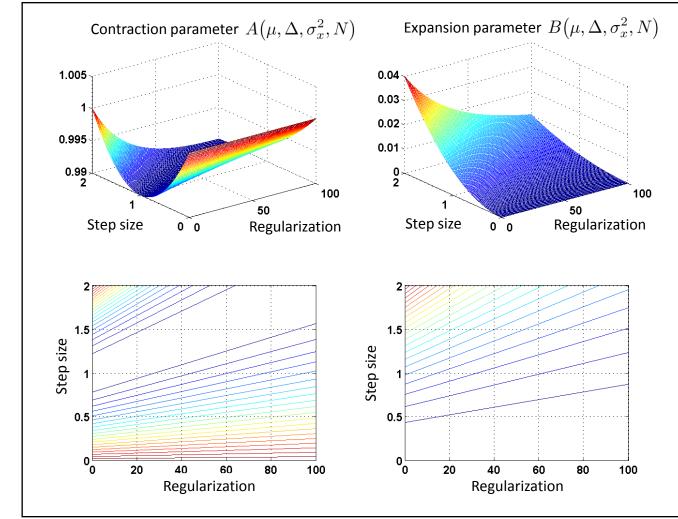
CAU

Influence of the Control Parameters

Values for the contraction and expansion parameters for the conditions:

$$\Box \ \sigma_x^2 = 1$$

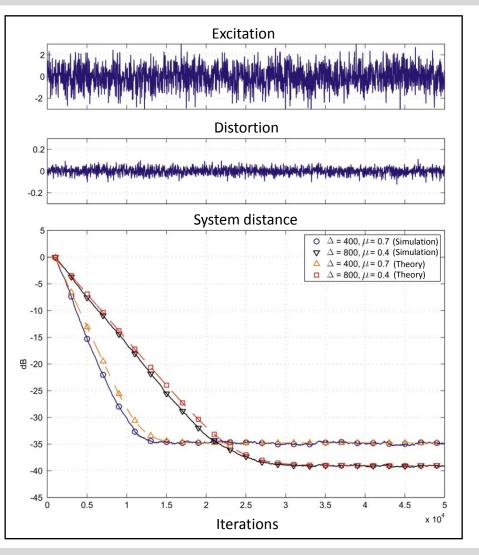
 $\square N = 100$



True and Prediction System Distance

Boundary conditions of the simulation:

- Excitation: white noise
- Distortion: white noise
- **SNR:** 30 dB



CAU

Maximum Convergence Speed – Part 1

For the special case without any distortions

$$n(n) = 0$$

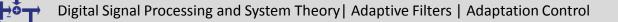
and with optimal control parameters for that case

 $\mu(n) = 1, \ \Delta = 0$

we get

$$\mathbb{E}\left\{\left\|\boldsymbol{h}_{\Delta}(n+1)\right\|^{2}\right\} \approx \left(1 + \frac{\mu^{2} N \sigma_{x}^{4}}{\left(N \sigma_{x}^{2} + \Delta\right)^{2}} - \frac{2 \mu \sigma_{x}^{2}}{N \sigma_{x}^{2} + \Delta}\right) \mathbb{E}\left\{\left\|\boldsymbol{h}_{\Delta}(n)\right\|^{2}\right\}$$
$$= \left(1 - \frac{1}{N}\right) \mathbb{E}\left\{\left\|\boldsymbol{h}_{\Delta}(n)\right\|^{2}\right\}.$$

Meaning that the average system distance can be reduced per adaptation step by a factor of 1 - 1/N. As a result adaptive filters with a lower amount of coefficients converge faster than long adaptive filters.



CAU

Maximum Convergence Speed – Part 2

If we want to know how long it takes to improve the filter convergence by 10 dB, we can make the following ansatz:

$$E\left\{ \|\boldsymbol{h}_{\Delta}(n+n_{10dB})\|^{2} \right\} = \frac{1}{10} E\left\{ \|\boldsymbol{h}_{\Delta}(n)\|^{2} \right\} \approx \left(1-\frac{1}{N}\right)^{n_{10dB}} E\left\{ \|\boldsymbol{h}_{\Delta}(n)\|^{2} \right\}.$$

As on the previous slide we assumed an undisturbed adaptation process. By applying the natural logarithm we obtain

$$-\ln 10 \approx n_{10\,\mathrm{dB}} \ln \left(1 - \frac{1}{N}\right).$$

By using the following approximations

 $\ln(1+x) \approx x$ for |x| < 1, and $\ln 10 \approx 2$,

we get

$$-2 \approx n_{10 \,\mathrm{dB}} \left(-\frac{1}{N}\right)$$

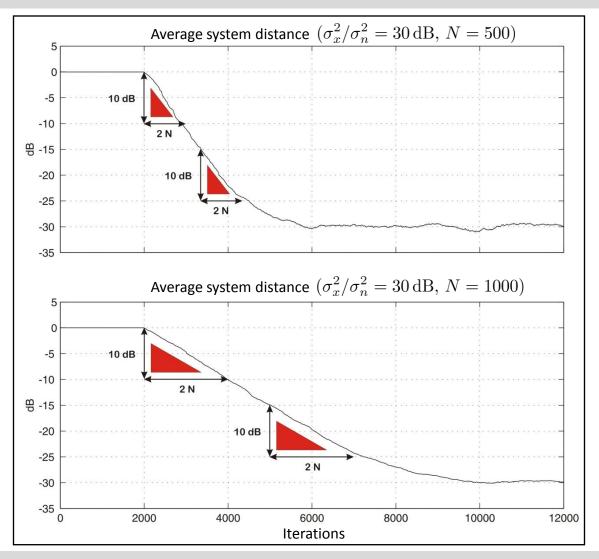
$$n_{10 \,\mathrm{dB}} \approx 2N.$$

This means: At maximum speed of convergence it takes about 2N iterations until the average system distance is reduced by 10 dB.

The "10 dB per 2N" Rule

Boundary conditions of the simulation:

- Excitation: white noise
- Distortion: white noise
- **SNR: 30 dB**
- Step size: 1
- Different filter lengths (500 and 1000)



Prediction of the Steady-State Convergence – Part 1

Recursion of the average system distance:

$$\begin{split} \mathbf{E} \left\{ \| \boldsymbol{h}_{\Delta}(n) \|^{2} \right\} &\approx A(...) \mathbf{E} \left\{ \| \boldsymbol{h}_{\Delta}(n-1) \|^{2} \right\} + B(...) \sigma_{n}^{2} \\ &\approx A(...) \left(A(...) \mathbf{E} \left\{ \| \boldsymbol{h}_{\Delta}(n-2) \|^{2} \right\} + B(...) \sigma_{n}^{2} \right) + B(...) \sigma_{n}^{2} \\ &\vdots \\ &\approx A^{n}(...) \mathbf{E} \left\{ \| \boldsymbol{h}_{\Delta}(0) \|^{2} \right\} + B(...) \sigma_{n}^{2} \sum_{i=0}^{n-1} A^{i}(...) \end{split}$$

For $n \to \infty$ and appropriately chosen control parameters we obtain:

$$\lim_{n \to \infty} A^{n}(...) \to \left\{ \| \boldsymbol{h}_{\Delta}(0) \|^{2} \right\} = 0$$
$$\lim_{n \to \infty} B(...) \sigma_{n}^{2} \sum_{i=0}^{n-1} A^{i}(...) = B(...) \sigma_{n}^{2} \frac{1}{1 - A(...)}$$

Prediction of the Steady-State Convergence – Part 2

By inserting the results from the previous slide we obtain:

$$\lim_{n \to \infty} \mathbf{E} \left\{ \| \boldsymbol{h}_{\Delta}(n) \|^2 \right\} \approx \frac{B(\dots) \sigma_n^2}{1 - A(\dots)}$$

For the adaptation without regularization we get:

$$A(\dots) = 1 - \frac{\mu(2-\mu)}{N}$$
$$B(\dots) = \frac{\mu^2}{N\sigma_x^2}$$

Inserting these values leads to:

$$\lim_{n \to \infty} \mathbf{E} \left\{ \left\| \boldsymbol{h}_{\Delta}(n) \right\|^2 \right\} \quad \approx \quad \frac{\mu}{2 - \mu} \, \frac{\sigma_n^2}{\sigma_x^2}$$

CAU

Optimal Step Size – Motivation

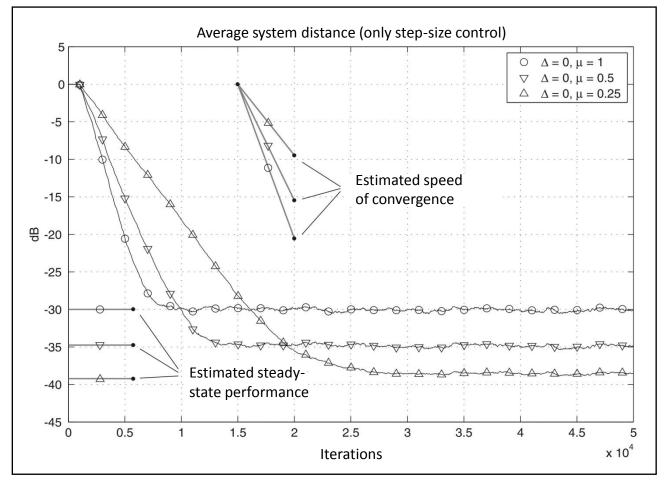
Remarks:

With a large step size one can achieve a fast initial convergence, but only a poor steady-state performance.

With a small step size a good steady-state performance can be obtained, but only a slow initial convergence.

Solution:

Utilization of a timevariant step-size.



Christian-Albrechts-Universität zu Kiel

Optimal Step Size – Derivation

... Derivation during the lecture ...

CAU

Optimal Step Size – Example

Boundary conditions of the simulation:

- Excitation: white noise
- Distortion: white noise
- **SNR: 30 dB**
- □ Filter length: 1000 coefficients

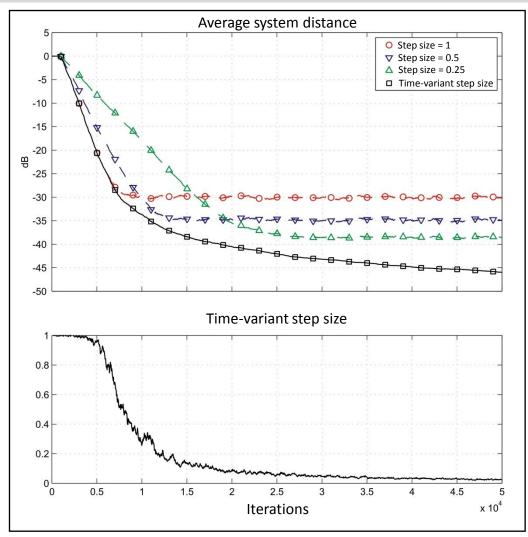
Computation of the step size:

$$P_e(n) = \beta \cdot P_e(n-1) + (1-\beta) \cdot e^2(n)$$

$$P_{e_u}(n) = \beta \cdot P_{e_u}(n-1) + (1-\beta) \cdot e_u^2(n)$$

with
$$\beta = 0.995$$

$$\mu(n) = \frac{P_{e_u}(n)}{P_e(n)}$$



CAU

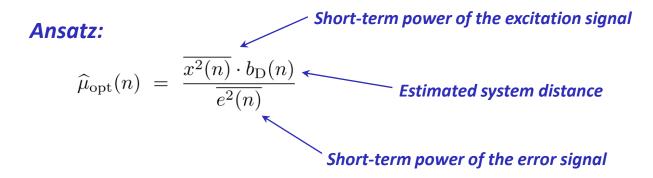
Estimation of the Optimal Step Size

Approximation for the optimal step size:

$$\mu_{\rm opt}(n) \approx \frac{{\rm E}\left\{e_{\rm u}^2(n)\right\}}{{\rm E}\left\{e^2(n)\right\}} = \frac{{\rm E}\left\{e_{\rm u}^2(n)\right\}}{{\rm E}\left\{e_{\rm u}^2(n)\right\} + {\rm E}\left\{n^2(n)\right\}}$$

For white excitation we get:

$$\mu_{\text{opt}}(n) \approx \frac{\mathrm{E}\left\{e_{\mathrm{u}}^{2}(n)\right\}}{\mathrm{E}\left\{e^{2}(n)\right\}} = \frac{\mathrm{E}\left\{x^{2}(n)\right\} \cdot \left\|\boldsymbol{h}_{\Delta}(n)\right\|^{2}}{\mathrm{E}\left\{e^{2}(n)\right\}}$$



CAU

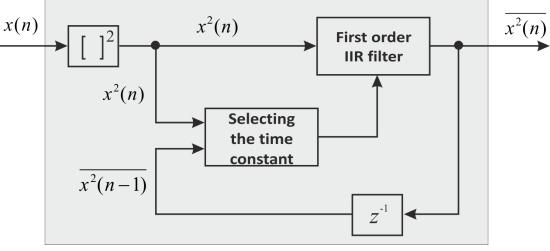
Christian-Albrechts-Universität zu Kiel

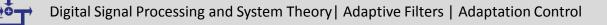
Estimation Procedures for the Optimal Step Size – Part 1

First order IIR smoothing with different time constants for rising and falling signal edges:

$$\overline{x^{2}(n)} = \begin{cases} \beta_{\rm r} x^{2}(n) + (1 - \beta_{\rm r}) \overline{x^{2}(n-1)}, & \text{if } x^{2}(n) > \overline{x^{2}(n-1)}, \\ \beta_{\rm f} x^{2}(n) + (1 - \beta_{\rm f}) \overline{x^{2}(n-1)}, & \text{else.} \end{cases}$$

Different time constants are used to achieve smoothing on one hand but also being able to follow sudden signal increments quickly on the other hand.

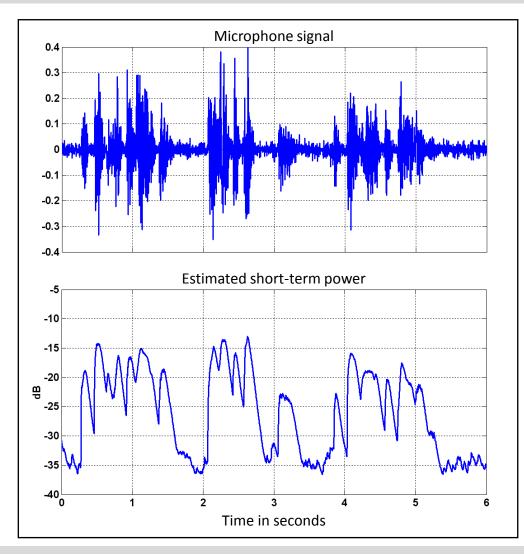




Estimation Procedures for the Optimal Step Size – Part 2

Boundary conditions of the simulation:

- Excitation: speech
- SNR: about 20 dB
- \Box $\beta_{\rm r}$ = 0.007, $\beta_{\rm f}$ = 0.002
- □ Sample rate: 8 kHz



Estimation Procedures for the Optimal Step Size – Part 3

Estimating the system distance:

$$\|\boldsymbol{h}_{\Delta}(n)\|^{2} = \|\boldsymbol{h} - \widehat{\boldsymbol{h}}(n)\|^{2} = \sum_{i=0}^{N-1} (h_{i} - \widehat{h}_{i}(n))^{2}$$

Problem:

The coefficients h_i are not known.

Solution:

We extend the system by an artificial delay of $N_{\rm D}$ samples. For that part of the impulse response we have

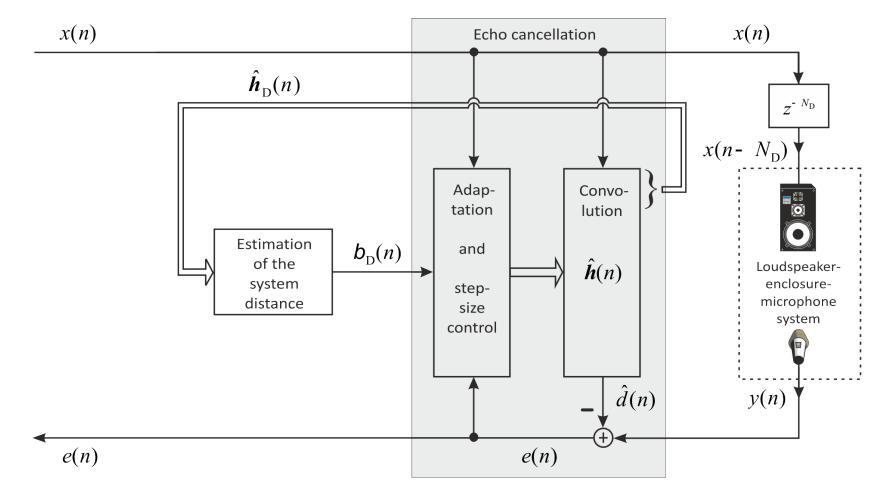
$$h_i = 0, \qquad i \in \{0, 1, ..., N_D - 1\}.$$

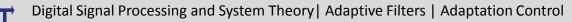
With these so-called *delay coefficients* we can extrapolate the system distance:

$$b_{\rm D}(n) = \frac{N}{N_{\rm D}} \sum_{i=0}^{N_{\rm D}-1} \widehat{h}_i^2(n).$$

Estimation Procedures for the Optimal Step Size – Part 4

Structure of the system distance estimation:

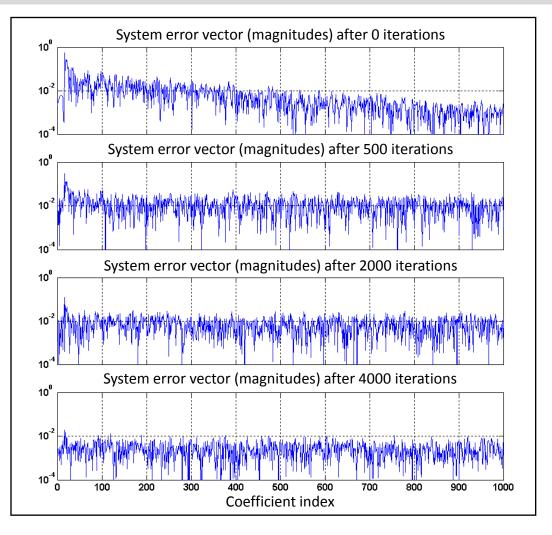




CAU

Estimation Procedures for the Optimal Step Size – Part 5

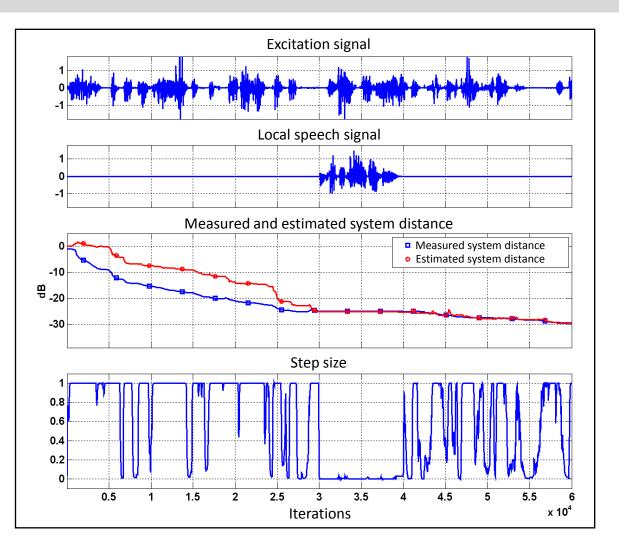
"Error spreading property" of the NLMS algorithm:



Estimation Procedures for the Optimal Step Size – Part 6

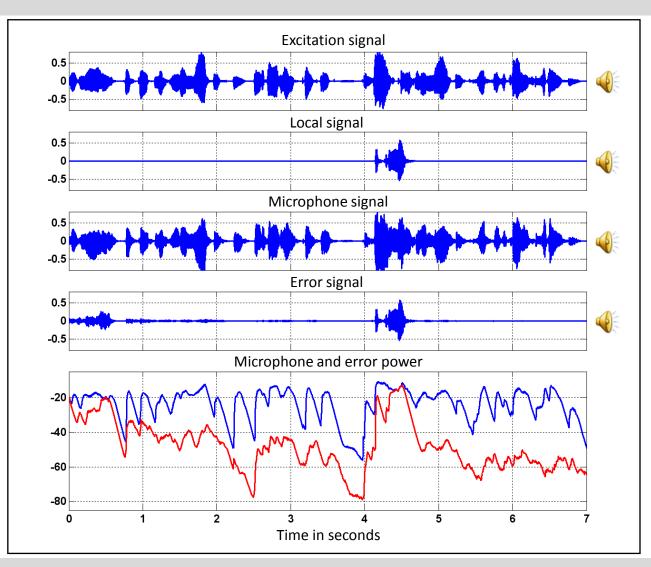
Boundary conditions of the simulation:

- Excitation: speech
- Distortion: speech
- SNR during single talk:30 dB
- Filter length: 1000 coefficients



CAU

Convergence Examples – Part 5

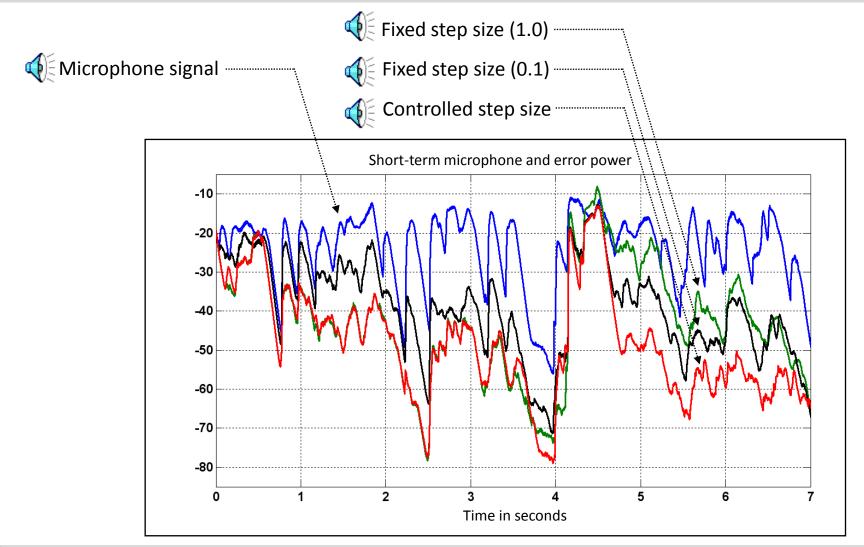


؇ Fixed step size 1.0

🐠 Fixed step size 0.1

CAU

Convergence Examples – Part 6



Summary and Outlook

This week:

- Introduction and Motivation
- Prediction of the System Distance
- Optimum Control Parameters
- Estimation Schemes
- Examples

Next week:

□ Reducing the Computational Complexity of Adaptive Filters

