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Today:

Contents of the Lecture

 Repetition of linear prediction

 Properties of prediction filters

 Application examples

 Improving the convergence speed of adaptive filters

 Speech and speaker recognition

 Filter design
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Structure Consisting of an Prediction Filter and of an Inverse Prediction Filter

Repetition

Prediction filter

Prediction error filter

Prediction filter

Inverse prediction error filter
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Design of a Prediction Filter

Repetition

Cost function:
Minimizing the mean squared error

Solution:

Robust and efficient implementation:

Levinson-Durbin recursion

Yule-Walker equation system
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Levinson-Durbin Recursion

Repetition

Initialization:

 Predictor:

 Error power (optional):

Recursion:

 PARCOR coefficient:

 Forward predictor:

 Backward predictor:

 Error power (optional):

Termination:

 Numerical problems:

 Final order reached: If      has reached the desired order stop the recursion.

If                               , use the coefficients of the previous 
step and stop the recursion.
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Impact of a Prediction Error Filter in the Frequency Domain – Part 1

Repetition

Estimated power spectral densities

Input signal (speech)
Decorrelated signal (filter order = 16)

Frequency in Hz
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Impact of a Prediction Error Filter in the Frequency Domain – Part 2

Repetition

Prediction filter

Prediction error filter

Inverse prediction error filter

Power adjustment

Inverse power 
adjustment

Prediction filter



Slide 8Slide 8Digital Signal Processing and System Theory| Adaptive Filters | Applications of Linear Prediction

Impact of a Prediction Error Filter in the Frequency Domain – Part 3

Repetition

Inverse prediction error filter (order = 1)
Power adjusted filter
Power spectral density of the input signal

Inverse prediction error filter (order = 2)
Power adjusted filter
Power spectral density of the input signal

Inverse prediction error filter (order = 4)
Power adjusted filter
Power spectral density of the input signal

Inverse prediction error filter (order = 8)
Power adjusted filter
Power spectral density of the input signal

Inverse prediction error filter (order = 16)
Power adjusted filter
Power spectral density of the input signal

Inverse prediction error filter (order = 32)
Power adjusted filter
Power spectral density of the input signal

Frequency in HzFrequency in Hz
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Properties – Part 1

Prediction Error Filter

Minimization without restrictions (included in the filter structure)

 Cost function:

The resulting filter has minimum phase:

 An FIR filter is computed with all its zeros within the unit circle.

 Signals can pass the filter with minimum delay.

 The inverse prediction filter is stable, since all zeros become poles and the zeros are located
in the unit circle.

Normalized filters are generated – Part 1:

 Frequency response of the filter:

 Frequency response of the inverse: 
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Properties – Part 2

Prediction Error Filter

Normalized filters are generated (true for the prediction filter as well as for the 
inverse filter) – Part 2:

 Frequency response of the prediction filter:

 Frequency response of the inverse filter:

 Type of normalization:
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Properties – Part 3

Prediction Error Filter

Normalized filters are generated (true for the prediction filter as well as for the 
inverse filter) – Part 3:

Frequency in Hz

Inverse prediction error filter (IIR, filter order = 16)

Prediction error filter (FIR, filter order = 16)
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Estimation of the Spectral Envelope

Inverse Prediction Error Filter

Parametric estimation of the spectral envelope:

 Reducing the amount of parameters required to describe the specral envelope (compared to
short-term spectrum)

 Independence of other signal properties (such as the pitch frequency)

Short-term spectrum of a vowel
Spectrum of the corresponding inverse prediction error filter

Frequency in Hz
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Applications of Linear Prediction

Applications of Linear Prediction – Part 1

Improving the Speed of Convergence 
of Adaptive Filters
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Improving the Speed of Convergence of Adaptive Filters – Part 1

Applications of Linear Prediction

Simulation example:

 Excitation: colored noise 
(power spectral density [PSD]
of the excitation is changed
after 1000 samples)

 Distortion: white noise

 Monitoring the error power
and the system distance

Samples

Samples

Samples

Normalized frequency

dB

dB

System distance

Error power

Excitation

Distortion

PSD (first 1000 samples) PSD (second 1000 samples)

Normalized frequency
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Improving the Speed of Convergence of Adaptive Filters – Part 2

Applications of Linear Prediction

Prediction
error filter

Prediction 
error filter

Inverse prediction
error filter

Decorrelated 
signal domain

Time-invariant decorrelation:
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Improving the Speed of Convergence of Adaptive Filters – Part 3

Applications of Linear Prediction

Prediction
error filter

Decorrelated
signal domain

Simplified time-invariant decorrelation:

 The adaptive filter
has to model the 
(unknown) system
in series with the
inverse 
prediction error
filter (the 
convolution of
both impulse
responses)

 Wiener solution:
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Improving the Speed of Convergence of Adaptive Filters – Part 4

Applications of Linear Prediction

Time-variant decorrelation

Prediction
error filter

Prediction 
error filter

Decorrelated
signal domain

 Every 10 to 50 ms the 
prediction filters are 
updated.

 With the update also
the signal memory of
the adaptive filters needs
to be corrected.

 This can be realized
in an efficient manner
by using a so-called
double-filter structure.
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Improving the Speed of Convergence of Adaptive Filters – Part 5

Applications of Linear Prediction

Time in seconds

Sy
st

em
 d

is
ta

n
ce

 in
 d

B

Without decorrelation
Time-invariant dec. (1. order)
Time invariant dec.(2. order)
Time-variant dec. (10. order)
Time-variant dec. (18. order)

Convergence runs

(averaged over 

several simulations,
speech was used as 
excitation):
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Applications of Linear Prediction

Application of Linear Prediction – Part 2

Speech and Speaker Recognition
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Basics of Speaker Recognition – Part 1

Applications of Linear Prediction

 To recognize a speaker, first features are extracted out of the signal, e.g. the spectral envelope.
This is performed every 5 to 30 ms.

 After extracting the feature vector it is compared with all entries of a codebook and the entry
with minimum distance is detected.

 This has to be done for several codebooks, each belonging to an individual speaker.

 For each codebook the minimum distances are accumulated.

 The accumulated minimum distances determine which speaker is the one with the 
largest likelihood.

 Models for known speakers are competing with “universal” models.

 Often the winning codebook is adapted according to the new features. 

Basic Principle:
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Basics of Speaker Recognition – Part 2

Applications of Linear Prediction

Frequency

dB

Current
spectral

envelope

Codebook of the first speaker

Codebook of the second speaker

„Best“ entry of
the first codebook

„Best“ entry of 
the second 

codebook
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Appropriate Cost Functions for Speech and Speaker Recognition – Part 1

Applications of Linear Prediction

 An appropriate cost function should measure the „perceived“ distance between spectral 
envelopes. Similar envelopes should result in a small distance, very different envelopes in 
a large one, and the distance of equal envelopes should be zero.

 The cost function should be invariant to different amplitude settings when recording the 
speech signal.

 The cost function should have low computational complexity.

 The cost function should mimic the human perception (e.g. having a logarithmic loudness
scale).   

Requirements:

Ansatz:

Cepstral distance
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Appropriate Cost Functions for Speech and Speaker Recognition – Part 2

Applications of Linear Prediction

Ansatz:

Frequency in Hz

Envelope 1
Envelope 2

Cepstral distance
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Appropriate Cost Functions for Speech and Speaker Recognition – Part 3

Applications of Linear Prediction

A „well known“ alternative – The (mean) squared error:

Frequency in Hz

Envelope 1
Envelope 2

Quadratic distance (squared error)
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Appropriate Cost Functions for Speech and Speaker Recognition – Part 4

Applications of Linear Prediction

Cepstral distance:

Parseval

mit
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Appropriate Cost Functions for Speech and Speaker Recognition – Part 5

Applications of Linear Prediction

 Definition

 Fourier transform for discrete signals and systems

 Replacing        with     (z-transform)

Efficient transformation of prediction into cepstral coefficients:
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Appropriate Cost Functions for Speech and Speaker Recognition – Part 6

Applications of Linear Prediction

 Previous result

 Inserting the structure of an inverse prediction error filter

Efficient transformation of prediction into cepstral coefficients:
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Appropriate Cost Functions for Speech and Speaker Recognition – Part 7

Applications of Linear Prediction

 Previous result

 Computing the coefficients with non-positive index:

 Using the following series: Inserting

Efficient transformation of prediction into cepstral coefficients:
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Appropriate Cost Functions for Speech and Speaker Recognition – Part 8

Applications of Linear Prediction

 Computing the coefficients with non-positive index

 After inserting the result of the last slide we get:

 Thus, we obtain

All coefficients with non-positive index are zero!

Efficient transformation of prediction into cepstral coefficients:
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Appropriate Cost Functions for Speech and Speaker Recognition – Part 9

Applications of Linear Prediction

 Previous result

 Differentiation 

 Multiplication of both sides with […] 

Efficient transformation of prediction into cepstral coefficients:
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Appropriate Cost Functions for Speech and Speaker Recognition – Part 10

Applications of Linear Prediction

 Previous result

 Comparing the coefficients for  

 Comparing the coefficients for  

Efficient transformation of prediction into cepstral coefficients:
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Appropriate Cost Functions for Speech and Speaker Recognition – Part 11

Applications of Linear Prediction

Efficient transformation of prediction into cepstral coefficients:

Recursive method with low complexity. The sum can be 
truncated after 3/2 N, since cepstral coefficients with a larger
index usually do not contribute significantly to the result.
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Applications of Linear Prediction

Applications of Linear Prediction – Part 3

Filter Design
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Filter Design – Part 1

Applications of Linear Prediction

Specification of a 
tolerance scheme:

 Often a lowpass, bandpass,
bandstop, or highpass
filter is specified.

 The solution is computed
iteratively (e.g. by means
of programs such as
Matlab).

 FIR or IIR filters can be
designed.

Normalized frequency

Normalized frequency

Logarithmic plot

Linear plot

Magnitude response
Ideal response
Tolerance scheme

Magnitude response
Ideal response
Tolerance scheme
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Filter Design – Part 2

Applications of Linear Prediction

… but what to do, if e.g. …

 … a filter with arbitrary (known only at run-time) frequency response should be designed. 

 … the filter should have either FIR or IIR structure (or a mix of both).

 … a mininum-phase filter should be designed (minimum group delay).

 … only limited computational power and memory are available for the design process.

Frequency

dB
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Filter Design for Prediction Filters  – Part 1

Applications of Linear Prediction

Levinson-Durbin
recursion

Power
adjustment

Autocorrelation
function

Inverse prediction
error filter (IIR filter)
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Filter Design for Prediction Filters  – Part 2

Applications of Linear Prediction

Design desired magnitude frequency response
(square afterwards to obtain power spectral density )

IDFT

Levinson-Durbin
recursion

Power
adjustment

Autocorrelation
function

Inverse prediction
error filter (IIR filter)
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Filter Design for Prediction Filters  – Part 3

Applications of Linear Prediction

Design desired magnitude frequency response
(square afterwards to obtain power spectral density )

IDFT

Levinson-Durbin
recursion

Power
adjustment

Autocorrelation
function

Inverse prediction
error filter (IIR filter)

IDFT

Autocorrelation
function

Levinson-Durbin
recursion

Power
adjustment

Prediction error filter 
(FIR filter)

Robust inversion 
(avoid divisions by zero)

Comparison

Filter type selection 
(FIR or IIR)
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Design Example

Applications of Linear Prediction
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Applications of Prediction-based Filter Design – Part 1

Applications of Linear Prediction

 For adaptively adjusting limiters.

 For low-delay noise reduction filters.

 For frequency selective gain adjustment of the output of speech prompters and hands-free
systems (loudspeaker output).

Power spectral density of the echo

Input signal
Output signal

Computaion of the
gain and the 
spectral shape

Gain Shaping (frequency selective)

Low order
FIR filter Power

normalization

Power spectral density of the noise

Application examples:
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Applications of Prediction-based Filter Design – Part 2

Applications of Linear Prediction

Intelligibility
improvement  

Intelligibility  
improvement

Measurement:

Binaural recording
while acceleration of
a car (left ear signal 
depicted).

Details:  B. Iser, G. Schmidt: Receive Side Processing in a
Hands-Free Application, Proc. HSCMA, 2008
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Summary and Outlook

Adpative Filters – Applications of Linear Prediction

This week: 

 Repetition of linear prediction

 Properties of prediction filters

 Application examples

 Improving the convergence speed of adaptive filters

 Speech and speaker recognition

 Filter design


