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Today:

O Repetition of linear prediction
Q Properties of prediction filters

Q Application examples
Q Improving the convergence speed of adaptive filters
O Speech and speaker recognition
Q Filter design
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Repetition
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Structure Consisting of an Prediction Filter and of an Inverse Prediction Filter
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Prediction filter -
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Prediction error filter —
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Inverse prediction error filter
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Repetition

Design of a Prediction Filter

Cost function:
Minimizing the mean squared error

E{e*(n)} — min

Solution:

Yule-Walker equation system
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(1) () () AN =DV hopeo
2 | | o o) r(N=2) | | o
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rssv(l) 1%:38 h':pt

Robust and efficient implementation:

Levinson-Durbin recursion
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Repetition

Levinson-Durbin Recursion

Initialization:
Q Predictor:

3 Error power (optional):

Recursion:
O PARCOR coefficient:

QO Forward predictor:
0O Backward predictor:

Q Error power (optional):

Termination:

a Numerical problems:

Q Final order reached:

E, = r(0)
N = (D) @D
(N) T( )_ Tss () opt
r(0) = (FY (1) Fooye
N N N) 1T N—1 N) 7 (N-1)
[h(() ), hg )7 ) hJ(N—)Z] — h(()pt )_hg\f—)l hOpt
EEN) - hg\]rv—)iq

min min

B = BUY (1 (0,)°)

If (hg\jfv_)l)2 > 1 — €, use the coefficients of the previous
step and stop the recursion.

If V has reached the desired order stop the recursion.
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Repetition
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Impact of a Prediction Error Filter in the Frequency Domain — Part 1

Estimated power spectral densities
0 | \

— input signal (si:)eech)
— Decorrelated signal (filter order = 16)

.,

) | i | \ | | |
60O 500 1000 1500 2000 2500 3000 3500 4000

Frequency in Hz
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Repetition
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Impact of a Prediction Error Filter in the Frequency Domain — Part 2

2_1 B h 1

7
1111

v(n) >@ S
Prediction filter -‘

/ Power adjustment /

Prediction error filter

x(n) < n X ST— 5
Prediction filter

SN SN 5

/'

Inverse prediction error filter Inverse power
adjustment
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Repetition
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Impact of a Prediction Error Filter in the Frequency Domain — Part 3

iy | —— Power adjusted filter _ ] —— Power adjusted filter
80k — Power spectral density of the input signal I 80k — Power spectral density of the input signal

1) — : R

Ty — : R

_60|--—| — Inverse prediction error filter (order = 4) I o — — Inverse prediction error filter (order = 8)
-70L-----| — Power adjusted filter H iy (] — — Power adjusted filter
80 — Power spectral density of the input signal i -80L — Power spectral density of the input signal

-70---|—— Power adjusted filter H — Power adjusted filter
-80F----{—— Power spectral density of the input signal H — Power spectral density of the input signal I
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Frequency in Hz Frequency in Hz
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Prediction Error Filter
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Properties —Part 1

Minimization without restrictions (included in the filter structure)

O Cost function:

N—1 2
E{e*(n)} = E (a:(n) — Z hix(n—1i— 1)) — min

The resulting filter has minimum phase:
a An FIR filter is computed with all its zeros within the unit circle.
a Signals can pass the filter with minimum delay.
A The inverse prediction filter is stable, since all zeros become poles and the zeros are located
in the unit circle.
Normalized filters are generated — Part 1: N
0 Frequency response of the filter: Hpp(e) =1 - Z hi_q e 7%

i=1
1

N
1 — E h@'_l 6_'791
=1
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Prediction Error Filter

Christian-Albrechts-Universitat zu Kiel

Properties — Part 2

Normalized filters are generated (true for the prediction filter as well as for the
inverse filter) — Part 2:

N
O Frequency response of the prediction filter: Hpp (6jQ) =1- Z hi_ye %
=1

1

N
1= hiqe 7
i=1

Q Frequency response of the inverse filter: H.. or (ejﬂ) _

A Type of normalization:

2T 27
/ 20 logg { | Hew (/%) |} d02 = / 20 10810 { | Hiww. s (%) } a2 = 0
2=0 Q=0

i
-OM Digital Signal Processing and System Theory| Adaptive Filters | Applications of Linear Prediction Slide 10



Prediction Error Filter

Properties — Part 3

Normalized filters are generated (true for the prediction filter as well as for the
inverse filter) — Part 3:

25

20 § ; ; ; —— Prediction error filter (FIR, filter order = 16) L

15
10

|
2000
Frequency in Hz
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Inverse Prediction Error Filter
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Estimation of the Spectral Envelope

Parametric estimation of the spectral envelope:

O Reducing the amount of parameters required to describe the specral envelope (compared to
short-term spectrum)

O Independence of other signal properties (such as the pitch frequency)

T T T T T
: = Short-term spectrum of a vowel
=-=== Spectrum of the corresponding inverse prediction error filter

S S

0 1000 2000 3000 4000 5000
Frequency in Hz
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Applications of Linear Prediction
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Applications of Linear Prediction — Part 1

Improving the Speed of Convergence
of Adaptive Filters
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Applications of Linear Prediction
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Improving the Speed of Convergence of Adaptive Filters — Part 1

o ation

Simulation example: I P S \LH“‘MI
D Excitation: Colored noise 0 2’.!)0 400 600 Sﬂﬂsam1l:(;cli(;s 1200 14‘00 18‘00 1B‘DD ‘| 2000

" PSD (first 1000 samples) ,,PSD (second 1000 samples)

(power spectral density [PSD]
of the excitation is changed
after 1000 samples)

. S
. . . . H 0 0.2 04 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Q Distortion: white noise Normalized frequency Normalized frequency

QO Monitoring the error power St OO U S OO ROt EORRR IR RNt SRR
and the system distance orl

~ System distance

.. Errorpower .. .. ... 3
P T A U S /.
: 2

g

0 200 400 600 800 1000 1200
Samples
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Applications of Linear Prediction

Improving the Speed of Convergence of Adaptive Filters — Part 2

Time-invariant decorrelation:
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b(n)
y(n) e(n)
>  g(n) S ‘;GP >
d(n)
X
., > gn) >
Prediction Inverse prediction
error filter error filter
Decorrelated
signal domain Prediction
error filter
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Applications of Linear Prediction

Improving the Speed of Convergence of Adaptive Filters — Part 3

Simplified time-invariant decorrelation:

O The adaptive filter
has to model the
(unknown) system

!n series with the w(n) d(n)
inverse

S
—

=
S’
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Y
Q
—_

S
~—

Y

D
=
3
v

prediction error -
filter (thg J(n)
convolution of
both impulse X
responses) 5

h 4
E\)
=

Prediction
error filter

a Wiener solution:

pa~ 19
Gopt ( e’ : n) Decorrelated

-G (ejQ? n) Ho .. (ejQ) signal domain
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Applications of Linear Prediction
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Improving the Speed of Convergence of Adaptive Filters — Part 4

Time-variant decorrelation
b(n)
Q Every 10 to 50 ms the
prediction filters are () d(n) /L y(n) e(n)
updated. » g(n) 29, g >
l—
O With the update also
the signal memory of
the adaptive filters needs N d(n)
to be corrected. ' > g(n)
| PN
Q This can be realized F,
in an efficient manner Prediction
: Prediction L .
by using a so-called ) error filter
. error filter
double-filter structure. %
I §(n) —>(+
Decorrelated
signal domain
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Applications of Linear Prediction

Improving the Speed of Convergence of Adaptive Filters — Part 5

Convergence runs

(averaged over
several simulations,
speech was used as
excitation):

System distance in dB

-10

-15

— Without decorrelation

S | —— Time-invariant dec. (1. order)
‘ ———— Time invariant dec.(2. order)
Time-variant dec. (10. order)
Time-variant dec. (18. order)

Time in seconds
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Applications of Linear Prediction
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Application of Linear Prediction — Part 2

Speech and Speaker Recognition
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Applications of Linear Prediction
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Basics of Speaker Recognition — Part 1

Basic Principle:

O To recognize a speaker, first features are extracted out of the signal, e.g. the spectral envelope.
This is performed every 5 to 30 ms.

O After extracting the feature vector it is compared with all entries of a codebook and the entry
with minimum distance is detected.

A This has to be done for several codebooks, each belonging to an individual speaker.
O For each codebook the minimum distances are accumulated.

O The accumulated minimum distances determine which speaker is the one with the
largest likelihood.

II)

a Models for known speakers are competing with “universal” models.

a Often the winning codebook is adapted according to the new features.
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Applications of Linear Prediction
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Basics of Speaker Recognition — Part 2

Codebook of the first speaker

,Best” entry of A A

the first codebook \\J ”¥
>

Current A
A spectral /\
envelope . N
dB \

Codebook of the second speaker

/7

,Best” entry of
the second
codebook

A A
Frequency j p_
> >
A A
NS NN
> >
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Applications of Linear Prediction
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Appropriate Cost Functions for Speech and Speaker Recognition — Part 1

Requirements:

O An appropriate cost function should measure the ,perceived” distance between spectral
envelopes. Similar envelopes should result in a small distance, very different envelopes in
a large one, and the distance of equal envelopes should be zero.

O The cost function should be invariant to different amplitude settings when recording the
speech signal.

O The cost function should have low computational complexity.

A The cost function should mimic the human perception (e.g. having a logarithmic loudness

scale).
Ansatz:
2
dceps(“ , ) = / lﬂ{Hmv_pF,l(BjQ)} —1H{H111V_PF!2(ej52)}‘dQ
Q=0

T
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Applications of Linear Prediction
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Appropriate Cost Functions for Speech and Speaker Recognition — Part 2

Ansatz:
21
Q
Aoy o)) = / 1n{Hm,PF,l(e )}—m{HmV,PF,Z(e )}‘dQ
Q=0
Cepstral distance
25 1 r T ! . 1 '
i i i : § g Envelope 1
] /A U E— e R . Envelope 2

15 IR, S E..

10

dB

T — T E— — o R -

P I A S S NI 7

20 i i i i i i i
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency in Hz
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Applications of Linear Prediction

Appropriate Cost Functions for Speech and Speaker Recognition — Part 3

A ,well known” alternative — The (mean) squared error:

2w 9
dmse("'v'“) — / ‘Hinv.PF,l(ejQ) - Hinv.PF,Q(ejQ) d2
2=0
Quadratic distance (squared error)
200 : : | :
i i i i i ; Envelope 1
180 o T S Envelope 2
o ———— e -
NN I N N N NN A
- -
e
B
.
V00 \\ U N N R —
i SERC
. | : e ; ;
0 500 1000 1500 2000 2500 3000 3500 4000

Frequency in Hz
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Applications of Linear Prediction
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Appropriate Cost Functions for Speech and Speaker Recognition — Part 4

Cepstral distance:
271
dceps( ) ) = / ln{Hmv PF 1(’3 )} —In {Hinv PF 2( )}‘dﬂ
Q=0
Parseval
> 2
dceps("') "‘) - Z (ci,l - ci,2)
3/2 N

Q

2
E (C;a:,1 - Ci,z)

i=1
o
_ i 6Jsz)} I g0
?/ 2 1nv PF

In{z} =In|z| + jarg{z}
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Applications of Linear Prediction
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Appropriate Cost Functions for Speech and Speaker Recognition — Part 5

Efficient transformation of prediction into cepstral coefficients:

O Definition
o
1 0.
7/ — 2_ / 1nv PF 6JS2)} 6‘]521 dQ

Q Fourier transform for discrete signals and systems

Z C; e I — ln{Hinv_pF(em)}

T=—00

Q Replacing ¢7** with z (z-transform)

oo

E c;z "

1=—00

= In {Hinv. PF(Z)}

z=ei% z=eif
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Applications of Linear Prediction
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Appropriate Cost Functions for Speech and Speaker Recognition — Part 6

Efficient transformation of prediction into cepstral coefficients:

O Previous result

> @]
Z C; z7" = In {Hinv. PF(Z)}
=—00
a Inserting the structure of an inverse prediction error filter

;27" = In !
)

N .
t=—0o 1— Z h@'_l A
=1

N
= —ln{l—Zhi_lz_"”}
1=1
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Applications of Linear Prediction
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Appropriate Cost Functions for Speech and Speaker Recognition — Part 7

Efficient transformation of prediction into cepstral coefficients:

O Previous result

oo

N
Z ¢zt = —ln{l—Zhi_lz_i}
i=1

1=—00

O Computing the coefficients with non-positive index:

111{1 —éhi_lz_i} = m{ﬂ(l —biz_l)}

1=0

N
= Zln{l—biz_l} <«
i=0

O Using the following series: Inserting
n{l—-bz"1} = — ?z—k, for |z| > [b] ———
k=1
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Applications of Linear Prediction
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Appropriate Cost Functions for Speech and Speaker Recognition — Part 8

Efficient transformation of prediction into cepstral coefficients:

O Computing the coefficients with non-positive index

O After inserting the result of the last slide we get:

ln{l—Zhi_lz_l} = —ZZ?Z_’Q
i=1

1=0 k=1

O Thus, we obtain

oo

N
Zci 27" = —In {1 — Zh.,;_l z_i}
i=1

i=1

All coefficients with non-positive index are zero!
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Applications of Linear Prediction
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Appropriate Cost Functions for Speech and Speaker Recognition — Part 9

Efficient transformation of prediction into cepstral coefficients:

O Previous result

le’s) N
Zci 27" = —In {1 — Zh,,;_l Z_i}
i=1 =1

O Differentiation

=1

oo N N
- Z.C@' Z_Z_l = — E ih@'_l Z_z_l 1-— E h@'_l z7*

a Multiplication of both sides with [...]

—1

N

00 oo N
E ?:C»,;Z_?'_l — E E kckhi_lz_k”’_l = E ih@g_lz_"’_l
=1

k=1 =1 1=1
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Applications of Linear Prediction
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Appropriate Cost Functions for Speech and Speaker Recognition — Part 10

Efficient transformation of prediction into cepstral coefficients:

O Previous result
o0 N

oo N
Zic@- - Z Z kephiz 700 = Zihi—l 271
=1 k=1 i=1 i—1
0O Comparing the coefficients for i € {1, ..., N}

1—1
ic; — E kEcehi—ik—1 = thi
k=1

O Comparing the coefficients for ¢ > N

1—1
?:C@' — chkhz‘—k—l = 0
k=1
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Applications of Linear Prediction

Appropriate Cost Functions for Speech and Speaker Recognition — Part 11

Efficient transformation of prediction into cepstral coefficients:

(0, if 1 <1,

1—1
hi—1 + % >, kephi—g—1, if1<i<N,
Ci = 3 ‘ k=1

1—1

1

= kZ keghi—p_1, else.
—1

N

Recursive method with low complexity. The sum can be

truncated after 3/2 N, since cepstral coefficients with a larger
index usually do not contribute significantly to the result.

\

i
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Applications of Linear Prediction
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Applications of Linear Prediction — Part 3

Filter Design
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Applications of Linear Prediction
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Filter Design — Part 1

Specification of a Linear plot
tolerance scheme:

— Magnitude response |-+
— Ideal response
""" Tolerance scheme |7

a Often a lowpass, bandpass,
bandstop, or highpass
filter is specified.

S

Q The solution is computed 5 5 5

| | |
0 0.1 0.2 0.3 04 05 0.6 0.7 08 0.9 1

iteratively (eg by means Normalized frequencyQ/x
of programs such as Logarithmic plot
Matlab). 10 : | | : : | ' ' |

— Magnitude response
— Ideal response
""" Tolerance scheme |

QO FIR or IIR filters can be
designed.

i I i
0 0.1 0.2 0.3 04 05 0.6
Normalized frequencyCi/n
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Applications of Linear Prediction
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Filter Design — Part 2

... but what to do, if e.g. ...

Q ... a filter with arbitrary (known only at run-time) frequency response should be designed.

A

dB

A 4

Frequency

Q ... the filter should have either FIR or IIR structure (or a mix of both).
Q ... a mininum-phase filter should be designed (minimum group delay).

a ... only limited computational power and memory are available for the design process.
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Applications of Linear Prediction
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Filter Design for Prediction Filters — Part 1

Autocorrelation
function

Levinson-Durbin
recursion

Power
adjustment

Inverse prediction
error filter (IR filter)
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Applications of Linear Prediction
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Filter Design for Prediction Filters — Part 2

Design desired magnitude frequency response
(square afterwards to obtain power spectral density )

IDFT

Autocorrelation
function

Levinson-Durbin
recursion

Power
adjustment

Inverse prediction
error filter (IR filter)
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Applications of Linear Prediction

Filter Design for Prediction Filters — Part 3

Design desired magnitude frequency response
(square afterwards to obtain power spectral density )

Christian-Albrechts-Universitat zu Kiel

IDFT

Autocorrelation
function

Levinson-Durbin
recursion

Power
adjustment

Inverse prediction
error filter (IR filter)

Comparison

>

Robust inversion
(avoid divisions by zero)

IDFT

Autocorrelation
function

Levinson-Durbin
recursion

Power
adjustment

Prediction error filter
(FIR filter)

Filter type selection
(FIR or IIR)
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Applications of Linear Prediction

Christian-Albrechts-Universitat zu Kiel

Design Example

u Adaptive Filters - Demo Prediction Based Filter Design |ﬂ‘i-J
File Edit View Insert Tools Desktop Window Help k]
Adaptive Filters Demo - Prediction Based Filter Desian
30 ! ! ! ! ! - ! '
11| I — g SIS U N Desired shape 1

— FIR approximation {selected)

| R Sl T besansenseninesanesaney bazsnesas ====|IR approximation
O (S Eooemmmonns - :
-10
P 2 S N e S S B TS SRS =
-30 | | | | | | | | |
0 01 0.2 03 04 05 06 07 08 09 1
MNormalized frequency / &
30 T T I I I I

Filter parameters: I I I

; : — R approximation (selected), average log. error: 1.233 dB
FIROrder:[ 16 e e R H
Sitg 18 : : ====|IR approximation, average log. error: 1473 dB

IR Order: 16

230 I ! ! ! ! !
0 01 0.2 03 04 05 06 07 08 09 1
MNormalized frequency / &
Add points Delete points Design filters Close
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Applications of Linear Prediction
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Applications of Prediction-based Filter Design — Part 1

Application examples:
O For adaptively adjusting limiters.
Q For low-delay noise reduction filters.

O For frequency selective gain adjustment of the output of speech prompters and hands-free
systems (loudspeaker output).

Gain Shaping (frequency selective)
Low order >
FIR filter Power
Input signal - normalization Outout sienal
> > > — Output signa

Power spectral density of the noise T W

| > Computaion of the

gain and the

| > spectral shape

Power spectral density of the echo [l
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Applications of Linear Prediction

Christian-Albrechts-Universitat zu Kiel

Applications of Prediction-based Filter Design — Part 2

Measurement' Without processing
Binaural recording E
while acceleration of z
a car (left ear signal g

. [T
depicted).

T

g

T

g

[T

Time in seconds

Details: B. Iser, G. Schmidt: Receive Side Processing in a
Hands-Free Application, Proc. HSCMA, 2008
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Adpative Filters — Applications of Linear Prediction
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Summary and Outlook

This week:

0 Repetition of linear prediction

Q Properties of prediction filters

QO Application examples
Q Improving the convergence speed of adaptive filters
a Speech and speaker recognition
Q Filter design
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