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Short Excurse on Digital Signal Processors

Fixed-Point DSP Hardware

Example for a 16-bit fixed-
point DSP architecture:

❑ Architecture with 2 busses 

❑ Only main components
are depicted

❑ Architecture varies 
among different vendors

Several
registers

X register Y register

X data bus (read and write)

Y data bus (only read)

Multiplier

Shifting by -1, 0, 1 bit

Unit for arithmetic and 
logic computations

Accumulator 0 Accumulator 1

Limitation

Saturation
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Digital Filters

General Remarks  – Part 1

❑ Linear-time-invariant (LTI) causal system with a rational transfer function (without loss of generality: numerator degree = 
denominator degree =     )   

with              without loss of generality.
: parameters of the LTI system (coefficients of the digital filter)

:          filter order    

❑ Product notation:

where the        are the zeros, and the          are the poles of the transfer function (latter are responsible for stability). 

Digital filters:
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Digital Filters

General Remarks – Part 2

❑ Difference equation:

with          denoting the input signal and          the resulting signal after filtering. 

❑ Generally the above equation describes a recursive filter with an infinite impulse 
response (IIR filter):           is calculated from                                                     and recursively from

❑ The calculation of          requires some memory elements in order to store                                           and    
Dynamic system.

❑ If 

Filter has no zeros         all-pole or autoregressive (AR) filter.

Remarks:
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Digital Filters

General Remarks – Part 3

The difference equation is purely recursive:

❑ If                                          (causal filter required!): 
The difference equation is purely non-recursive: 

Non-recursive filter
Transfer function:

❑ Poles                                           but not relevant for stability     all-zero filter.  

❑ According to the difference equation:          is obtained by a weighted average of the last              input values       
Moving average (MA) filter (as opposite to the AR filter).

❑ From the transfer function it can be seen that the impulse response has finite length.
Finite impulse response (FIR) filter of length                     and order     .
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Digital Filters

Structures for FIR systems – Part 1

The impulse response is equal to the coefficients     :

With the difference equation of the FIR systems and the relation above we get 

which is the linear convolution sum (with                       ). A possible realization is given in the

Direct form structure: Tapped-delay or transversal filter – Part 1

First direct form
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Digital Filters

Structures for FIR systems – Part 2

Direct form structure: Tapped-delay or transversal filter – Part 2

By transposing the flow graph, that means

❑ reversing the direction of all branches,

❑ exchanging the input and output of the flow graph and

❑ exchanging summation points with branching points and vice versa,

we get the second direct form (below redrawn version): 

If the unit impulse                          is chosen as the input signal, all samples of the impulse response              appear 
successively at the output of the structure.
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Digital Filters

Structures for FIR systems – Part 3

Direct form structure: Tapped-delay or transversal filter – Part 3

The number of multiplications can be reduced if the impulse response of the system is symmetric, e.g. if we have:

Then the number of multiplication can be reduced  from     to          in the even case and to                    in the odd case. 
Below the flow graph for the odd case is depicted:
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Digital Filters

Structures for FIR systems – Part 4

Cascade-form structures 

We obtain the cascade realization by factorizing the transfer function into a cascade of shorter length filters:

❑ The reason for the cascade structure is that the shorter-length filters              can be implemented with improved 
robustness in one of the direct forms than the overall filter.

❑ The             are usually second order filters with real coefficients. Therefore the poles and zeros have to be real or appear
in conjugate complex pairs.

❑ For linear phase filters the zeros have to appear in quadruples.

Remarks:
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Digital Filters

Structures for IIR systems – Part 1

Direct form structures – Part 1 

A rational system function           can be divided into two parts – an all-zero part and in an all-pole part . 

The all-zero filter            can be realized with the direct form. By attaching the all-pole system             in cascade we obtain the 
direct form I realization.
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Digital Filters

Structures for IIR systems – Part 2

Direct form structures – Part 2 

Signal flow graph 
of the direct 
form I realization:

All-zero
system

All-pole 
system
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Digital Filters

Structures for IIR systems – Part 3

Direct form structures – Part 3 
Another realization can be obtained by exchanging the position of the all-pole and the all-zero filter.

where the sequence           is an intermediate result and is the input of the all-zero part.

Difference equation for the all-pole part:

Difference equation of the all-zero part:

The resulting structure is called direct form II realization. Furthermore, it is said to be canonic since it minimizes the 
number of memory elements. Only one single delay line is required for storing the delayed versions of the sequence           .
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Digital Filters

Structures for IIR systems – Part 4

Direct form structures – Part 4 

Signal flow graph 
of the direct form II 
realization:

Exchanging the order 
of the subfilters
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Digital Filters

Structures for IIR systems – Part 5

Direct form structures – Part 5 

Transposing the direct 
form II realization 
leads to the following 
structure:
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Digital Filters

Structures for IIR systems – Part 6

Partner work – Please think about the following question and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ What are the advantages and disadvantages of the two structures depicted below?

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

Direct form structures – Part 6 
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Digital Filters

Structures for IIR systems – Part 7

Cascade-form structures – Part 1 

As for FIR systems we can cascade Subsystems             of first or second order to the desired system           : 

First order subsystem:

Canonical direct form for a first order filter (“bi-linear” filter): 

Every first order transfer function can be realized with the above flow graph.
Corresponding transfer function: 
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Digital Filters

Structures for IIR systems – Part 8

Cascade-form structures – Part 2 

Second order subsystem:

Canonical direct form for a second order filter (“bi-quad” filter): 

Corresponding transfer function: 
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Digital Filters

Structures for IIR systems – Part 9

Cascade-form structures – Part 3 

Example:

Given is a so-called Chebyshev lowpass filter of 5th order and the cut-off frequency                         (      is the sampling frequency). 
A filter design approach yields the transfer function below. The corresponding filter design algorithms will be discussed later on: 

❑ The zeros are all at                                        for                           .
The poles are  

❑ By grouping the poles              and             we get three subsystems – two second order subsystems and one first order 
subsystem with the pole           :
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Digital Filters

Structures for IIR systems – Part 10

Cascade-form structures – Part 4 
Example (continued):

❑ For the implementation on a fixed-point DSP it is advantageous to ensure that all stages have similar amplification in 
order to avoid numerical problems. Therefore, all subsystems are scaled such that they have approximately the same 
amplification for low frequencies:

Remark:
The position of the subsystems in the cascade is in principle arbitrary. However, here the poles of               are closest to
the unit circle. Thus, using a fixed-point DSP may lead more likely to numerical overflow compared to                and        . 
Therefore, it is advisable to realize the most sensible filter as the last subsystem.
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Digital Filters

Structures for IIR systems – Part 11

Cascade-form structures – Part 5 

Example (continued):

❑ Frequency responses:
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Digital Filters

Structures for IIR systems – Part 12

Cascade-form structures – Part 6 

Example (continued):

❑ Resulting signal flow graph:
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Digital Filters

Structures for IIR systems – Part 13

Parallel-form structures – Part 1 

❑ We assume distinct poles (which is quite well satisfied in practice).  Then, the partial fraction expansion of a 
transfer function           with numerator degree     is given as

An alternative to the factorization of a general transfer function is to use a partial-fraction expansion, which leads to a 
parallel-form structure.

where                                    are the coefficients (residues) in the partial fraction expansion and

❑ We further assume that we have only real-valued coefficients, such that we can combine pairs of complex-
conjugate poles to form a second order subsystem: 

with
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Digital Filters

Structures for IIR systems – Part 14

Parallel-form structures – Part 2 

❑ Two real-valued poles can also be combined to a second order transfer function:

❑ If      is odd, there is one real-valued pole left, which leads to one first order partial fraction see example).

with
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Digital Filters

Structures for IIR systems – Part 15

Parallel-form structures – Part 3 

Signal flow graph of the parallel structure: Signal flow graph of a second order section:
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Digital Filters

Structures for IIR systems – Part 16

Parallel-form structures – Part 4 

Consider again the 5th order Chebyshev filter with the transfer function

Example: 

The partial fraction expansion can be given as: 

with the poles and residues

The resulting transfer function is:
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Digital Filters

Structures for IIR systems – Part 17

Parallel-form structures – Part 5 

Example (continued): The resulting signal flow graph 
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Digital Filters

Structures for IIR systems – Part 18

Partner work – Please think about the following question and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ What are the differences of the cascaded and parallel form structures?

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

❑ Can you think of applications / hardware architectures where you would prefer on of the structures? 
What do you need to know about the hardware in order to make such a decision?

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

Cascaded and Parallel-form structures 
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 1

Errors resulting from rounding and truncation – Part 1 

Number representation in fixed-point format:

In this section we discuss the effects of a fixed-point digital filter implementation on the system performance.

A real number     can be represented as

where      is the digit,    is the radix (base),     the number of integer digits, and      the number of fractional digits. Example:

Most important in digital signal processing:

❑ Binary representation with             and                    ,          most significant bit (MSB) and        least significant bit (LSB). 

❑ -bit fraction format:                                   binary point between      and            numbers between     and     
are possible.
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 2

Errors resulting from rounding and truncation – Part 2 

Number representation in fixed-point format (continued):

Positive numbers are represented as

The negative fraction

can be represented with one of the three following formats:

❑ Signs-magnitude format:

❑ One’s-complement format:

❑ Two’s complement format:

where     denotes a binary addition. 

Most DSPs use two’s-complement arithmetic 
(because of a good “temporary overflow” handling)

… with                         …
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 3

Errors resulting from rounding and truncation – Part 3 

Number representation in fixed-point format (continued):

Express the fraction         and            in sign-magnitude, two’s complement and one’s complement.

❑ can be represented as                                   such that 

❑ can be represented 

❑ in sign-magnitude format as

❑ in one’s complement  format as 

❑ in two’s complement format as   

Example:
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 4

Errors resulting from rounding and truncation – Part 4 

Truncation and rounding:

Problem:  Multiplication of two   -bit numbers yield a result of length  
truncation/rounding necessary      
can again be regarded as quantization of the (filter) coefficient 

Suppose that we have a fixed-point realization in which a number     is quantized from   
to     bits.

We first discuss the truncation case. Let the truncation error be defined as                             .

❑ For positive numbers the error is

Truncation leads to a number smaller than the non-quantized number.

❑ For negative numbers and the sign-magnitude representation the error is

Truncation reduces the magnitude of the number.



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| Digital Filters Slide 33

Digital Filters

Coefficient Quantization and Rounding Effects – Part 5

Errors resulting from rounding and truncation – Part 5 

❑ For negative numbers in the two’s complement case the error is

❑ Quantization characteristics for a continuous input signal    :

Truncation and rounding (continued):

Sign-magnitude 
representation

Two’s-complement 
representation
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 6

Rounding case: The Rounding error is defined as 

❑ Rounding affects only the magnitude of the number and is independent from the type of fixed-point realization.      

❑ Rounding error is symmetric around zero and falls in the range

❑ Quantization characteristic function: 

Errors resulting from rounding and truncation – Part 6 

Truncation and rounding (continued):
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 7

If a number is larger/smaller than the maximal/minimal possible number representation,

❑ for sign magnitude and one’s-complement arithmetic,

❑ and                   , resp., for two’s-complement arithmetic,

we speak of an overflow/underflow condition.

Overflow example in two’s-complement arithmetic (range                   )

The resulting error can be very large when overflow/underflow occurs.

Numerical overflow – Part 1:
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 8

Two’s-complement quantizer for           :

Numerical overflow – Part 2 
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 9

Alternative: saturation or clipping. The error does not increase abruptly in magnitude when overflow/underflow occurs: 

Numerical overflow – Part 3 

Disadvantage: “Summation property” of the two’s-complement representation is violated.
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 10

Partner work – Please think about the following question and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ What are the most prominent representations in fixed-point arithmetic?

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

❑ How large / small can be the result of an addition / multiplication of two fixed-point numbers 

(e.g. each being represented by a 16 bit value)? 

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

❑ What do you know about number representations in floating-point arithmetic? 

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

Coefficient Quantization and Rounding Effects
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 11

Coefficient quantization errors – Part 1 

❑ In a DSP/hardware realization of an FIR/IIR filter the accuracy is limited by the word length of the computer 
Coefficients obtained from a design algorithm have to be quantized.

❑ Word length reduction of the coefficients leads to different poles and zeros to the desired ones. This may lead to

❑ modified frequency response with decreased selectivity,

❑ stability problems.

Sensitivity to quantization of filter coefficients

Direct form realization, quantized coefficients:  

and         represent the quantization errors.  
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 12

Effect of quantization of coefficients: 

Matlab example for
“robust” filter
design … 
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 13

Coefficient quantization errors – Part 2 

Sensitivity to quantization of filter coefficients (continued)

As an example, we are interested in the deviation                                       , when the denominator coefficients  are quantized 
(         denotes the resulting pole after quantization). It can be shown that this expression can be expressed as 
(Proakis, Manolakis, 1996, pp. 569):  

From this equation we can observe the following:

❑ By using the direct form, each single pole deviation              depends on all quantized denominator coefficients      .   

❑ The error             can be minimized by maximizing the distance                         between the poles          and     

Basic derivation on the
blackboard!
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 14

Coefficient quantization errors – Part 3 

Sensitivity to quantization of filter coefficients (continued)

Splitting the filter into single or double pole sections (first or second order transfer functions):

❑ Combining the poles           and          into a second order section leads to a small perturbation error             , 
since complex conjugate poles are normally sufficient far apart.  

❑ Realization in cascade or parallel form:

The error of a particular pole pair          and          is independent of its distance from the other poles of the transfer function.      
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 15

Coefficient quantization errors – Part 4 

Example: Effects of coefficient quantization

Elliptic filter of order                (Example taken from [Oppenheim, Schafer 1999])  

Unquantized: (a) Magnitude frequency response 
(b) Passband detail

Quantized: (c) Passband detail for cascade structure
(d) Passband detail for parallel structure
(e) Magnitude frequency response for direct structure

(a) (b)

(c) (d) (e)

(c), (d), and (e) are quantized with 16 bits
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 16

Coefficient quantization errors – Part 5 

Pole locations of quantized second order sections

Consider a two-pole filter with the transfer function

Poles:                             , coefficients:                                           , stability condition:          
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 17

Coefficient quantization errors – Part 6 

Pole locations of quantized second order sections (continued)

Quantization of       and       with             bits        possible pole positions:

Low density for poles (at low frequencies)
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 18

❑Non-uniformity of the pole position is due to the fact that                is quantized, while the pole locations               
are proportional    .

❑ Sparse set of possible pole locations around             and            . Disadvantage for realizing lowpass filters where the 
poles are normally clustered near            .  

Coefficient quantization errors – Part 7 

Pole locations of quantized second order sections (continued)

Alternative: Coupled-form realization

Which corresponds to the following signal flow graph:
Analysis on the blackboard
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 19

By transforming the equations into the z-domain, the transfer function of the filter can be obtained as

Coefficient quantization errors – Part 8 

Pole locations of quantized second order sections (continued)

❑We can see from the signal flow graph that the two coefficients              and              are now linear in    , such that a
quantization of these parameters lead to equally spaced pole locations in the z-plane:  

❑ Disadvantage. Increased computational complexity compared to the direct form.

Equally distributed density for poles 
(now better behavior at low frequencies)
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 20

Cascade form:

Coefficient quantization errors – Part 9 

Cascade or parallel form

❑ Cascade form: Only the numerator coefficients        of an individual section determine the perturbation of the 
corresponding zero locations         direct control over the poles and zeros

❑ Parallel form: A particular zero is affected by quantization errors in the numerator and denominator coefficients of all 
individual sections          numerator coefficients        and        do not specify the position of a zero directly, direct control over 
the poles only.  

Cascaded structures are more robust against coefficient quantization and should be used in most cases.  

Parallel form:
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 21

Example: Elliptic filter of order             , frequency and phase response ([Proakis, Manolakis 96])      

Coefficient quantization errors – Part 10 

Cascade or parallel form (continued)

Cascade form (3 digits                bits) Parallel form (              bits)
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 22

In FIR systems we only have to deal with the locations of the zeros, since for causal filters all poles are at            .  

Coefficient quantization errors – Part 11 

Coefficient quantization in FIR systems 

Remarks:
❑ For FIR filters an expression analogous to the deviation and the original and quantized poles can be derived for the zeros.  

FIR filters might also be realized in cascade form according  to  

with second order subsections, in order to limit the effects of coefficient quantization to zeros of the actual subsection only.

❑ However, since the zeros are more or less uniformly spread in the z-plane, in many cases the direct form is also used with 
quantized coefficients.

❑ For a linear-phase filter that has a symmetric or asymmetric impulse response, quantization does not affect the phase 
characteristics, but only the magnitude.
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 23

Partner work – Please think about the following question and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ What are the drawbacks of parallel filter structures? Are there also advantages?

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

❑ Why are FIR filters not as critical in terms of precision compared to IIR filters? 

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

❑ Why are in today’s processors sometimes the direct structures better than cascaded structures for FIR filters 

(answer can not be found in the slides)? 

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

Coefficient quantization errors – Part 12
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 24

Zero-input limit cycles – Part 1

❑ Stable IIR filters implemented with infinite-precision arithmetic: If the excitation becomes zero and remains zero for          
then the output of the filter will decay asymptotically towards zero.  

❑ Same system implemented with fixed-point arithmetic: Output may oscillate indefinitely with a periodic pattern while 
the input remains equal to zero: Zero-input limit cycle behavior, due to nonlinear quantizers in the feedback loop or 
overflow of additions.

In the following the effects are shown with two examples:

Limit cycles due to round-off truncation 

Given: First-order system with the difference equation

Register length for storing     and the intermediate results: 4 bits (sign bit plus 3 fractional bits)
product                    must be rounded or truncated to 4 bits, before adding to          . 
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 25

Zero-input limit cycles – Part 2

Limit cycles due to round-off truncation (continued) 
Signal flow graphs:

Infinite-precision
system:  

Nonlinear system due to
quantization:
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 26

Zero-input limit cycles – Part 3

Limit cycles due to round-off truncation (continued) 
Nonlinear difference equation (        represents two‘s-complement rounding):

Suppose we have 

Then:

A constant steady value is obtained for            . 

For                    we have a periodic steady-state oscillation between             and         .

Such periodic outputs are called limit cycles.

Quantization with rounding (+ 0.000100)
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 27

Zero-input limit cycles – Part 4

Limit cycles due to round-off truncation (continued) 

From [Oppenheim, Schafer, 1999]
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 28

Zero-input limit cycles – Part 5

Limit cycles due to overflow 

Consider a second-order system realized by the difference equation:

represents two‘s-complement rounding with one sign and 3 fractional digits.
Overflow can occur with the two‘s-complement addition of the products.
Suppose that

Then we have:

continues to oscillate unless an input is applied.
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 29

Zero-input limit cycles – Part 6

Remarks

❑ Some solutions for avoiding limit cycles:

❑ Use of structures which do not support limit-cycle oscillations.

❑ Increasing the word length.

❑ Use of a double-length accumulator and quantization after the accumulation of products. 

❑ FIR-filters are limit-cycle free since there is no feedback involved in its signal flow graph.
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Digital Filters

Coefficient Quantization and Rounding Effects – Part 30

Partner work – Please think about the following question and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ What kind of limit cycles is more critical? Please, give reasons for your answer!

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

❑ What can you do to avoid overflow-based limit cycles? 

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

❑ What can you do to avoid truncation-based limit cycles? 

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

Zero-input limit cycles – Part 7
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Digital Filters

Design of FIR Filters – Part 1

General remarks (IIR and FIR filters) – Part 1

❑ Ideal filters are non-causal, and thus physically unrealizable for real-time signal processing applications.

❑ Causality implies that the filter response                 cannot have an infinitely sharp cut-off from passband to stopband, 
and that the stopband amplification can only be zero for a finite number of frequencies     . 

Magnitude characteristics of physically realizable filter (             ):

: passband ripple,

: stopband ripple,

: passband edge frequency,

: stopband edge frequency

From [Proakis, Manolakis, 1996]
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Digital Filters

Design of FIR Filters – Part 2

General remarks (IIR and FIR filters) – Part 2

Filter design problem:

❑ Specify                       and       corresponding to the desired application, 

❑ Select the coefficients       and      (free parameters), such that the resulting frequency response                 best 
satisfies the requirements for                       and       .

❑ The degree which                 approximates the specifications depends on the criterion for selecting the       and the    
and also on the numerator and denominator degree      (the number of coefficients).     

How we will continue:

❑ Before we will start of “optimal” design procedures, we will first focus on very simple design schemes.

❑ However, due to their low complexity they are suitable for real-time filter design.

❑ In addition, we will first focus on linear-phase FIR filters.
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Digital Filters

Design of FIR Filters – Part 3

Linear-phase filters – Part 1

Important class of FIR filters, which we will mainly consider in the following.

Definition:

A filter is said to be a linear-phase filter, if its impulse response satisfies the condition                         :   

With the definition                              and     odd, this leads to a z-transform:

For     even we have
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Digital Filters

Design of FIR Filters – Part 4

Result from the last slide for an even filter length                           and                          :

When we now substitute     with          and multiply both sides both sides by                  we obtain with the definition of a 
linear-phase filter:

Linear-phase filters – Part 2

… multiplication of both sides with                                      …

… simplification and exchanging the order of the addends …

… inserting the result from above …
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Digital Filters

Design of FIR Filters – Part 5

Linear-phase filters – Part 3

Generalizing the result of the previous slide for all four cases, leads to

which is the z-transform equivalent to the definition of a linear-phase filter.

Consequences:

❑ The roots of the polynomial           are identical to the roots of the polynomial               :
If        is a zero of           then         is also a zero.                

❑ If additionally the impulse response       is real-valued, the roots must occur in complex-conjugate pairs: 
If        is a zero of           then         is also a zero.    

The zeros of a real-valued linear-phase filter occur in quadruples in the z-plane
(exception: zeros on the real axis, zeros on the unit circle). 
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Digital Filters

Design of FIR Filters – Part 6

Linear-phase filters – Part 4

Consequences (continued):

Example: Pole-zero-diagram of a linear-phase filter
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Digital Filters

Design of FIR Filters – Part 7

Linear-phase filters – Part 5

(a) Type-1 linear-phase system

Definition: Odd length    , even symmetry                          . Frequency response:

As a result we get for the phase of that filter type:                                                                                            

… using that                                           …

… abbreviating the term in brackets …

Real term, thus we have a linear phase due to             !

Remember:
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Digital Filters

Design of FIR Filters – Part 8

On the following slides
equivalent derivations

for the other cases
(even/odd, type of 

symmetry) will be
derived! The next

seven slides are for
reading at home!

Linear phase filters – Part 6

(a) Type-1 linear phase system (continued)

Impulse and (amplitude)
frequency response:
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Digital Filters

Design of FIR Filters – Part 9

Linear-phase filters – Part 7

(b) Type-3 linear-phase system

Odd length    , odd symmetry                            .
Frequency response:                                                                                            

❑ Linear phase: 

❑

Result:

… using that                                              and                 since                          … 

… abbreviating the term in brackets with                and using                     … 
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Digital Filters

Design of FIR Filters – Part 10

Linear-phase filters – Part 8

(b) Type-3 linear-phase system (continued)

Impulse and (amplitude)
frequency response:
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Digital Filters

Design of FIR Filters – Part 11

Even length    , even symmetry                         .
Frequency response:                                                                                            

Linear-phase filters – Part 9

(c) Type-2 linear-phase system

… using that                                             … 

… abbreviating the term in brackets with               … 

❑ Linear phase: 

❑

Result:
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Digital Filters

Design of FIR Filters – Part 12

Linear-phase filters – Part 10

(c) Type-2 linear-phase system (continued)

Impulse and (amplitude)
frequency response:

Note that               is not
periodic with      . That’s true

only for              ! The phase term
makes                           again

periodic with      !
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Digital Filters

Design of FIR Filters – Part 13

❑ Linear phase: 

❑

Linear-phase filters – Part 11

(d) Type-4 linear-phase system

Even length    , odd symmetry                             .
Frequency response:                                                                                            

Result:

… using that                                             … 

… abbreviating the term in brackets with               and using                     … 
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Digital Filters

Design of FIR Filters – Part 14

Linear-phase filters – Part 12

(d) Type-4 linear-phase system (continued)

Impulse and (amplitude)
frequency response:

Note that also               is not
periodic with      . That’s true

only for              ! The phase term
makes                                  again

periodic with      !
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Digital Filters

Design of FIR Filters – Part 15

Linear-phase filters – Part 13

Applications:

❑ Type-1 and type-2 filters are used for “ordinary” filtering, however type-2 filters are not suitable for high-pass filtering.

❑ Type-3 and type-4 filters for example are used for 90 degree phase shifters and so-called Hilbert transformers.
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Digital Filters

Design of FIR Filters – Part 16

Partner work – Please think about the following question and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ What types of linear-phase filters do we have? How do they differ?

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

❑ Why is the term             not always periodic with      ? 

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

❑ Do you know applications where linear-phase filters would be beneficial (compared to other filter types)? 

…………………………………………………………………………………………………………………………………………………………………………………….

…………………………………………………………………………………………………………………………………………………………………………………….

Linear-phase filters – Part 14
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Digital Filters

FIR Filters

C Code for FIR Filters
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Digital Filters

Design of FIR Filters – Part 17

Design of linear-phase filters using a window function

Given: Desired frequency response

Thus, the impulse response        can be obtained using the inverse Fourier-transform:

Linear-phase filters – Part 15

Examples for “desired” filters:

❑ Ideal lowpass, highpass, or bandpass filters

❑ Delay filters (delaying a signal by a non-integer amount of samples, “fractional delay”)

❑ Hilbert filters (e.g. for frequency shifting)
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Digital Filters

Design of FIR Filters – Part 18

Linear phase filters – Part 16

Design of linear-phase filters using a window function (continued)

The impulse response has generally infinite length.
Truncation to the length     by multiplication with a window function       is necessary:

Frequency response of the rectangular window (see section about “Frequency analysis of stationary signals” 
in the “DFT and FFT” chapter):

Rectangular window:
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Digital Filters

Design of FIR Filters – Part 19

Linear phase filters – Part 17

Design of linear-phase filters using a window function (continued)

Suppose, we want to design a linear-phase filter of length     with the desired frequency response

where       is denoting the cut-off frequency. For the corresponding impulse response we get:

Multiplication with a rectangular window of length      leads to
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Digital Filters

Design of FIR Filters – Part 20

Linear phase filters – Part 18

Design of linear-phase filters using a window function (continued)

Examples for                                        and                  :
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Digital Filters

Design of FIR Filters – Part 21

Disadvantage of using a rectangular window:
Large sidelobes lead to an undesirable ringing effects (overshoot at the boundary between pass- and stopband) 
in the frequency response of the resulting FIR filter.

Linear phase filters – Part 19

Design of linear-phase filters using a window function (continued)

Gibbs phenomenon:

❑ Result of approximating a discontinuity in the frequency response with a finite number of filter coefficients and a 
mean square error criterion

❑ The relation between                and         can be interpreted as a Fourier series representation with the Fourier 
coefficients                  Gibbs phenomenon results from a Fourier series approximation.

❑ The squared integral error

approaches zero with increasing length of        . However, the maximum value of the error                                           
approaches a constant value (independent of the filter length).
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Digital Filters

Design of FIR Filters – Part 22

Use of other appropriate window functions with lower sidelobes in their frequency responses.

Linear phase filters – Part 20
Design of linear-phase filters using a window function (continued)

From [Proakis, Manolakis, 1996]
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Digital Filters

Design of FIR Filters – Part 23

Frequency-domain characteristics of some window functions [Proakis, Manolakis, 1996]:

Linear phase filters – Part 21

Design of linear-phase filters using a window function (continued)

Type of window Approximate transition 
width of main lobe

Peak sidelobe
in dB

Rectangular -13

Bartlett -27

Hann -32

Hamming -43

Blackman -58

The parameter     in the Kaiser window allows to adjust the width of the main lobe, and thus also to adjust the compromise 
between overshoot reduction and increased transition bandwidth in the resulting FIR filter.      denotes the Bessel function 
of the first kind of order zero.
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Digital Filters

Design of FIR Filters – Part 24

Magnitude frequency response                                of the resulting linear-phase FIR filter, when different window functions 
are used to truncate the infinite-length impulse response          with the desired frequency response                :         

Linear phase filters – Part 22

Design of linear-phase filters using a window function (continued)

Achieved with a 
rectangular window

Achieved with a 
Hamming window
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Digital Filters

Design of FIR Filters – Part 25

Magnitude frequency response                                of the resulting linear-phase FIR filter, when different window functions 
are used to truncate the infinite-length impulse response          with the desired frequency response                :         

Linear phase filters – Part 23

Design of linear-phase filters using a window function (continued)

Achieved with a 
Blackman window

Achieved with a 
Kaiser window
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Digital Filters

Design of FIR Filters – Part 26

Linear phase filters – Part 24

Matlab
example
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Digital Filters

Design of FIR Filters – Part 27

Partner work – Please think about the following questions and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ What are the basic steps to get a stable, causal, finite, and linear-phase filter from a “desired” filter?

……………………………………………………………………………………………………………………………………………………………………………………..

……………………………………………………………………………………………………………………………………………………………………………………..

❑ What does the multiplication with a window function corresponds to in the frequency domain? 

How should the spectrum of an “optimal” window function look like? 

……………………………………………………………………………………………………………………………………………………………………………………..

……………………………………………………………………………………………………………………………………………………………………………………..

❑ What are the basic parameters that describe window functions in the frequency domain? 

……………………………………………………………………………………………………………………………………………………………………………………..

……………………………………………………………………………………………………………………………………………………………………………………..

Linear-phase filters – Part 24
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Digital Filters

Design of FIR Filters – Part 28

The desired frequency response                 is specified at a set of equally spaced frequencies:                          

Linear phase filters – Part 25

Frequency sampling design

We could now design an FIR filter with a frequency response equal to the desired one at the above mentioned 
frequency supporting points:

By combining both equations we obtain for                                   :
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Digital Filters

Design of FIR Filters – Part 29

Multiplication with                                             and summation over                                yields to  

Linear phase filters – Part 26

Frequency sampling design (continued) 

… multiplication with the exponential term mentioned above and summation … 

… exchanging the summation order and rearranging the exponential … 

… exploiting the properties of sums of exponentials … 
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Digital Filters

Design of FIR Filters – Part 30

Resolving the result from the last slide to      leads to

Linear phase filters – Part 27

Frequency sampling design (continued) 

… dividing by     and multiplication with              … 

Some remarks:

❑ The result can be computed efficiently using an IFFT!

❑ Note that only frequency supporting point are specified, the filter characteristic in between these supporting 
points might be “not as expected”.

❑ This type of design is sometimes used in real-time applications (due to its low complexity)!
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Digital Filters

Design of FIR Filters – Part 31

Linear phase filters – Part 28

Optimum equiripple design (Chebyshev approximation)

❑Window design techniques try to reduce the difference between the desired and the actual frequency response 
(error function) by choosing suitable windows.  

❑ How far can the maximum error be reduced?
The theory of Chebyshev approximation answers this question and provides us with algorithms to find the 
coefficients of linear-phase FIR filters, where the maximum of the frequency response error is minimized.  

❑ Chebyshev approximation:
Approximation that minimizes the maximum errors over a set of frequencies.

❑ The resulting filters exhibit an equiripple behavior in their frequency responses
equiripple filters.
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Digital Filters

Design of FIR Filters – Part 32

Linear phase filters – Part 29

Optimum equiripple design (Chebyshev approximation) (continued)

As we have shown before, every linear-phase filter has a frequency response of the form

where           is a real-valued positive or negative function (amplitude frequency response). 

It can be shown that for all types of linear-phase symmetry            can always be written as a weighted sum of cosines. 
For example, for type 1 linear-phase filters we have  

with
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Digital Filters

Design of FIR Filters – Part 33

Linear phase filters – Part 30

Optimum equiripple design (Chebyshev approximation) (continued)

Problem definition:

Acceptable frequency response for the FIR filter:

❑ Linear phase,

❑ transition bandwidth         between pass- and stopband,

❑ passband deviation          from unity,  

❑ stopband deviation          from zero.

(Multiple bands are possible as well.)  

In the following we will restrict ourselves to lowpass type 1 linear-phase filters.
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Digital Filters

Design of FIR Filters – Part 34

Approximation Problem: Given

❑ a compact subset       of            in the frequency domain (consisting of pass- and stop-band in the lowpass filter case), 

❑ a desired real-valued frequency response           , defined on      ,

❑ a positive weight function            , defined on      , and

❑ the form of           , here (type-1 linear phase)

Linear phase filters – Part 31

Optimum equiripple design (Chebyshev approximation) (continued)

Goal: Minimization of the error

over       by the choice of          .  

This is a so-called “minimax” criterion.
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Digital Filters

Design of FIR Filters – Part 35

Linear phase filters – Part 32

Optimum equiripple design (Chebyshev approximation) (continued)

Alternation theorem (without proof):

If           is a linear combination of     cosine functions,

then a necessary and sufficient condition is that           is the unique and best weighted Chebyshev approximation to a 
given continuous function            on       is: 

The weighted error function                                                           exhibits at least            extremal frequencies in      .   

These frequencies are supporting points for which hold: 
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Digital Filters

Design of FIR Filters – Part 36

Linear phase filters – Part 33

Optimum equiripple design (Chebyshev approximation) (continued)

❑ Consequences from the alternation theorem:
Best Chebyshev approximation must have an equiripple error function            and is unique.

❑ Example: Amplitude frequency response of an optimum type 1 linear-phase filter with

[Parks, Burrus: Digital Filter Design, 1987]
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Digital Filters

Design of FIR Filters – Part 37

Linear phase filters – Part 34

Optimum equiripple design (Chebyshev approximation) (continued)

❑ If the            extremal frequencies were known, we could use the frequency-sampling design from above to specify 
the desired values             at the extremal frequencies in the passband, and          in the stopband, respectively.   

How to find the set of extremal frequencies?

Remez exchange algorithm (Parks, McLellan, 1972)

❑ It can be shown that the error function

can be forced to take on some values       for any given set of            frequency points

Simplification

Restriction to                     and                                          
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Digital Filters

Design of FIR Filters – Part 38

Linear phase filters – Part 35

Optimum equiripple design (Chebyshev approximation) (continued)

Remez exchange algorithm (continued)

❑ The frequency point are usually chosen in an equally spaced grid.
The number of the frequency points is approximately            .

❑ The algorithm is initialized with a trial set of arbitrarily chosen frequencies 

This can be written as a set of linear equations according to

We obtain a unique solution for the coefficients                                      ,  and the error magnitude    . 

Finding the new set of extremal frequencies can be obtained using an FFT with zero padding:

R+1 equations!

R unknowns!
1 unknown!
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Digital Filters

Design of FIR Filters – Part 39

Linear phase filters – Part 36

Optimum equiripple design (Chebyshev approximation) (continued)

Remez exchange algorithm (continued)

The steps of the Remez algorithm:

1. Solve the linear equation for the desired frequency response           , yielding an error magnitude      in the    -th iteration.

2. Interpolate to find the frequency response on the entire grid of frequencies.

3. Search over the entire grid of frequencies for a larger magnitude error than       obtained in step 1.

4. Stop, if no larger magnitude error can be found.
Otherwise, take the            frequencies, where the error attains its maximum magnitude as a new trial set of extremal
frequencies and go to step 1.         
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Digital Filters

Design of FIR Filters – Part 40

Linear phase filters – Part 37

Optimum equiripple design (Chebyshev approximation) (continued)

Remez exchange algorithm (continued)

[From: Parks, Burrus:
Digital Filter Design, 1987] 
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Digital Filters

Design of FIR Filters – Part 41

Linear phase filters – Part 38

Remez exchange algorithm (continued)

Example:

Desired:

Problem: Choose the two coefficients       and       such that they minimize the Chebyshev error

(approximation of a parabola by a straight line).

Approach/ solution:

three extremal points         

the resulting equations to be solved:
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Digital Filters

Design of FIR Filters – Part 42

Linear phase filters – Part 39

Remez exchange algorithm (continued)

Example:
1. Arbitrarily chosen trial set:

Matrix version of the linear equations:

2. Next trial set chosen as those three points, where the error

achieves its maximum magnitude
Linear equations to solve: 
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Digital Filters

Design of FIR Filters – Part 43

After the third step the parameter     does not change any more. Now the coefficients       and      are used for the final solution.

Linear phase filters – Part 40

Remez exchange algorithm (continued)

Example:
3. Next trial set:

Linear equations to solve:

is the extremal point set.



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| Digital Filters Slide 103

Digital Filters

Design of FIR Filters – Part 44

Linear phase filters – Part 41

Remez exchange algorithm (continued)

Example:

[From: Parks, Burrus: Digital Filter Design, 1987] 
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Digital Filters

Design of FIR Filters – Part 45

Linear phase filters – Part 42

Remez exchange algorithm (continued)

Estimation of the filter length:

Given the stop-/ passband ripple              and the transition bandwidth                              the necessary filter order     can be 
estimated as (Kaiser, 1974)  

Design example:

Design a linear-phase lowpass filter with the specifications

weighting                      in the stopband.

The filter order estimate gives                    . Rounding up yields a filter length of                       
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Digital Filters

Design of FIR Filters – Part 46

Linear phase filters – Part 43

Remez exchange algorithm (continued)

Design example (continued):

In the passband the specifications are not satisfied.
Increasing the filter length by one, 
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Digital Filters

Design of FIR Filters – Part 47

Linear phase filters – Part 44

Remez exchange algorithm (continued)

Design example (continued):
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Digital Filters

Design of FIR Filters – Part 48

Partner work – Please think about the following questions and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ What are the problems when designing an FIR filter using only frequency supporting points?

……………………………………………………………………………………………………………………………………………………………………………………..

……………………………………………………………………………………………………………………………………………………………………………………..

❑ What is optimized with a “minimax” criterion? What other criteria do you know? 

……………………………………………………………………………………………………………………………………………………………………………………..

……………………………………………………………………………………………………………………………………………………………………………………..

❑ What are the basic steps of the Remez exchange algorithm? 

……………………………………………………………………………………………………………………………………………………………………………………..

……………………………………………………………………………………………………………………………………………………………………………………..

Linear-phase filters – Part 45
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Digital Filters

Predictor-based Filter Design

❑ Predictor-based filter design

❑ Linear-phase extension

Equalization with FIR and IIR filters

Magnitude frequency response of the equalization filter

Frequency in Hz

Magnitude frequency response with and without equalization

Without eq.
With eq.
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Digital Filters

Predictor-based Filter Design

Effect of a Prediction-Error Filter in the Frequency Domain

Frequency in Hz

Estimated power spectral densities

Input signal (speech)
Decorrelated signal (filter order = 16)
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Digital Filters

Predictor-based Filter Design

Effect of a Prediction-Error Filter in the Frequency Domain

Prediction filter

Prediction-error 
filter

Prediction filter

Inverse prediction-error filter

Power adjustment

Inverse power adjustment
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Digital Filters

Predictor-based Filter Design

Minimization without side conditions (they are included in the filter structure)

❑ Cost function:

The resulting prediction-error filter is minimum phase:

❑ An FIR-filter is computed, whose zeros are all inside the unit circle.

❑ Signals can pass the filter “maximally fast“.

❑ The inverse prediction filter (an IIR filter) is therefore automatically stable because all zeros turn into poles which are now
inside the unit circle as well.

The resulting filters are normalized:

❑ Frequency response of the prediction-error filter:

❑ Frequency response of the inverse filter:
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Digital Filters

Predictor-based Filter Design

Cost function:

❑ Minimization of the average error power

Lösung:

Robust and computationally efficient solution:

❑ Yule-Walker equation system

❑ Levinson-Durbin recursion
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Digital Filters

Predictor-based Filter Design

Interpretation of the impulse response as a signal:

Magnitude frequency response can be interpreted as a power density spectrum:

With this point of view, the autocorrelation function can be estimated directly out of the impulse response

With this point of view, the autocorrelation function can be estimated directly out of the magnitude frequency response by

This gives the option to modify the frequency response prior to computing the IDFT.
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Digital Filters

Predictor-based Filter Design

Autocorrelation 
computation

Impulse response 
measurement

Prediction-error filter
(FIR filter)

Levinson-Durbin
recursion
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Digital Filters

Predictor-based Filter Design

IDFT

Levinson-Durbin
recursion

Prediction-error filter
(FIR filter)

Modification

Smoothing

Design of the magnitude response, DFT, and 
(magnitude) squaring
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Digital Filters

Predictor-based Filter Design

Robust inversion
(avoid division by zero)

Comparison

Filter selection
(FIR or IIR)

Design of the magnitude response, DFT, and 
(magnitude) squaring

IDFT

Levinson-Durbin
recursion

Prediction-error filter 
(IIR filter)

Modification

Smoothing

IDFT

Levinson-Durbin
recursion

Prediction-error filter
(FIR filter)

Modification

Smoothing
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Digital Filters

Predictor-based Filter Design
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Digital Filters

Predictor-based Filter Design

Linear-Phase Filter Structures – Part 1

The system properties of FIR filters can be used to design a linear-phase equalization filter. If an FIR filter with frequency response 

is mirrored with respect to time, i.e.,

the frequency response of the mirrored filter is

Both filters connected in series result therefore in a linear-phase system. The attenuation (or gain) properties of the entire filter is 
doubled compared to a single filter.
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Digital Filters

Predictor-based Filter Design

Linear-Phase Filter Structures – Part 2

The property described on the previous slide can be exploited. In order not to do a “double” equalization, the filter is designed only 
with the magnitude spectrum (instead of the power density spectrum of the filter). This is a simple way to achieve halving (in the 
logarithmic domain) or taking the square root (in the linear domain) of the desired frequency response

The block diagram of the filter structure looks like this:
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Digital Filters

Predictor-based Filter Design

Frequency in Hz

Magnitude frequency responses of the equalization filters

Magnitude frequency responses with and without equalization

Group delays of the equalization filters

Without eq.
With minimum-phase eq.
With linear-phase eq.

Example for FIR-based equalization filters

❑ 32 coefficients

❑ No additional modifications in the frequency domain

❑Minimum-phase and linear-phase approach

Minimum-phase eq.
Linear-phase eq.

Minimum-phase eq.
Linear-phase eq.
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Digital Filters

Design of IIR Filters – Part 1

❑ In the following only design algorithms are discussed which convert an analog into a digital filter. However, there are also 
numerous algorithms for directly designing an IIR filter in the z-domain (frequency sampling method, least-squares design).

❑Why starting with an analog filter?
Analog filter design is a well developed field (lots of existing design catalogs).

❑ The problem can be defined in the z-domain, transformed into the s-domain and solved there, and finally transformed back 
into the z-domain.

❑Analog filter: Transfer function

with the filter coefficients               and the filter order                .

Basics of IIR-Filter Design – Part 1
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Digital Filters

Design of IIR Filters – Part 2

Furthermore: Definition of the Laplace Transform

❑ Note that linear-phase designs are not possible for causal and stable IIR Filters, since the condition

has to be satisfied.

Mirror-image pole outside the unit-circle for every pole inside the unit circle.

Unstable filter.

Basics of IIR-Filter Design – Part 2
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Digital Filters

Design of IIR Filters – Part 3

Goal: 

Design an IIR filter with an impulse response        being the sampled version of the impulse response            of a given analog filter

with      being the sampling interval. For the frequency response (ideal sampling assumed) we obtain:

Remarks:

❑ should be selected sufficiently small to avoid aliasing.

❑ The method is not suitable to design highpass filters due to the large amount of possible aliasing.

Filter design by impulse invariance – Part 1
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Digital Filters

Design of IIR Filters – Part 4

Suppose that the poles of the analog filter are distinct. In that case we can transform the transfer function into a 
partial-fraction expansion of            :

with           : coefficients of the partial-fraction expansion,
: poles of the analog filter.   

The inverse Laplace transform yields

Sampling of           yields

Filter design by impulse invariance – Part 2
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Digital Filters

Design of IIR Filters – Part 5

We obtain for the transfer function of      :

Filter design by impulse invariance – Part 3

… inserting the computation of       (see last slide) … 

… changing the summation order … 

… using the summation                                    for                  … 
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Digital Filters

Design of IIR Filters – Part 6

Thus, given an analog filter             with poles          the transfer function of the corresponding digital filter using the impulse 
invariant transform is:

with poles at                                                               .

Note: This result holds only for distinct poles. The generalization to multiple-order poles is possible.             

Filter design by impulse invariance – Part 4
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Digital Filters

Design of IIR Filters – Part 7

Problem:

Convert the analog filter with the transfer function

into a digital filter using the impulse invariant method.

Solution:

The poles of                                                      Partial fraction expansion yields:

We finally have:

Filter design by impulse invariance – Part 5

Example:
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Digital Filters

Design of IIR Filters – Part 8

Magnitude frequency responses:

Filter design by impulse invariance – Part 6

Example (continued):

Digital filter: Analog filter: 

[Proakis, Manolakis, 1996]
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Digital Filters

Design of IIR Filters – Part 9

Algebraic transform between the variables     and   . 
Mapping of the entire      -axis of the s-plane to one revolution of the unit circle in the z-plane.   

Bilinear transform – Part 1

Definition:

denoting the sampling interval.

The transfer function of the corresponding digital filter can be obtained from the transfer function of the analog filter    
according to
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Digital Filters

Design of IIR Filters – Part 10

Bilinear transform – Part 2

Properties:

❑ Rearranging the definition for    yields

By substituting                       we obtain

If                                  and if
causal, stable continuous-time filters map into causal stable discrete-time filters. 

❑ By inserting               into the above expression, it can be seen that               for all values of     on the       -axis.
The      -axis maps onto the unit circle (meaning that the bilinear transform is unique).
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Digital Filters

Design of IIR Filters – Part 11

Bilinear transform – Part 3

❑ Relationship between      and    :
Inserting               and                into the definition

Nonlinear mapping between      and     (warping of the frequency axis) according to      

Properties (continued): 
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Digital Filters

Design of IIR Filters – Part 12

As a result we obtain for the nonlinear mapping between      and     :

Bilinear transform – Part 4

Properties (continued): 

This could be interpreted 
as a warping of the 
frequency axis.



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| Digital Filters Slide 133

Digital Filters

Design of IIR Filters – Part 13

Bilinear transform – Part 5

s plane z plane



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| Digital Filters Slide 134

Digital Filters

Design of IIR Filters – Part 14

Bilinear transform – Part 6

Remarks:

❑ The design of a digital filter often begins with frequency specifications in the digital domain, which are converted to the 
analog domain. The analog filter is then designed considering these specifications (i.e. using the classical approaches 
from the following section) and converted back into the digital domain using the bilinear transform.  

❑When using this procedure, the parameter     cancels out and thus can be set to an arbitrary value (            ). 

Example:

Problem:

Design a digital single-pole lowpass filter with –3 dB frequency (cutoff frequency) of                     , using the bilinear 
transform applied to the analog filter with the transfer function 

with      denoting the analog cut-off frequency.   
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Digital Filters

Design of IIR Filters – Part 15

Bilinear transform – Part 7

Example (continued):

Solution:

is obtained from                 with 

The analog filter has now the transfer function

which is transformed back into the digital domain by using the bilinear transform
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Digital Filters

Design of IIR Filters – Part 16

Bilinear transform – Part 8

Example (continued):

Solution:

The transfer function of the digital filter is

Note that the parameter     has been divided out.   

The frequency response is

Especially we have                      , and                                     , which is the desired response. 
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Digital Filters

Design of IIR Filters – Part 17

Partner work – Please think about the following question and try to find answers 
(first group discussions, afterwards broad discussion in the whole group).

❑ What can you set/adjust when using the impulse invariance method?

……………………………………………………………………………………………………………………………………………………………………………………..

……………………………………………………………………………………………………………………………………………………………………………………..

❑ If you would have to specify properties of a method that maps the Laplace domain into the z-domain, 
what would you mention? 

……………………………………………………………………………………………………………………………………………………………………………………..

……………………………………………………………………………………………………………………………………………………………………………………..

❑ When using the bilinear transform, where is the imaginary axis mapped in the z-domain? 

……………………………………………………………………………………………………………………………………………………………………………………..

……………………………………………………………………………………………………………………………………………………………………………………..

Questions:
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Digital Filters

Design of IIR Filters – Part 18

Characteristics of commonly used analog filters – Part 1

❑ The design of a digital filter can be reduced to the design of an appropriate analog filter and then performing the 
conversion from           to           .

❑ In the following we briefly discuss the characteristics of commonly used analog (lowpass) filters. 
We will focus here on four different types of IIR filters:

❑ Butterworth filters

❑ Type 1 Chebyshev filters

❑ Type 2 Chebyshev filters

❑ Cauer filters
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Digital Filters

Design of IIR Filters – Part 19

Examples for the 
different filter types:

All filter are of order 4.

The bilinear transform
has been used to
create discrete filters.

Characteristics of commonly used analog filters – Part 2
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Digital Filters

Design of IIR Filters – Part 20

Characteristics of commonly used analog filters – Part 3

Butterworth filters

Lowpass Butterworth filters are 
allpole-filters characterized by 
the squared magnitude 
frequency response

is the order of the filter,
is the -3 dB frequency 

(cut-off frequency). 
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Digital Filters

Design of IIR Filters – Part 21

Characteristics of commonly used analog filters – Part 4

Butterworth filters (continued)

Since                                                          , we get by analytic continuation into the whole s-plane

Poles of                         :   

❑ The        poles of                       occur on a circle of radius         at equally spaced points in the s-plane.

❑ poles are located in the left half of the s-plane and belong to

❑ The     remaining poles lie in the right half of the s-plane and belong to               (stability!).
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Digital Filters

Design of IIR Filters – Part 22

Characteristics of commonly used analog filters – Part 5

Butterworth filters (continued)

Pole locations in the s-plane for               :

Poles that belong to  

Poles that belong to  
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Digital Filters

Design of IIR Filters – Part 23

Characteristics of commonly used analog filters – Part 6

Butterworth filters (continued)
Frequency responses (                                                        ):

[Proakis, Manolakis, 1996]
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Digital Filters

Design of IIR Filters – Part 24

Characteristics of commonly used analog filters – Part 7

Butterworth filters (continued)

Estimation of the required filter order:

At the stopband edge frequency           the squared magnitude frequency response can be written as

which leads to
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Digital Filters

Design of IIR Filters – Part 25

Characteristics of commonly used analog filters – Part 8

Butterworth filters (continued)

Problem:

Determine the order and the poles of a lowpass Butterworth filter that has a -3 dB bandwidth of 500 Hz and an 
attenuation of 40 dB at 1000 Hz,

Example:

❑ -3 dB frequency

❑ stopband frequency

❑ attenuation of 40 dB  

Solution:

For the order we obtain

In order to be “on the safe side” we choose 



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| Digital Filters Slide 146

Digital Filters

Design of IIR Filters – Part 26

Characteristics of commonly used analog filters – Part 9

Butterworth filters (continued)

Properties of the resulting digital filter (transformation by the bilinear transform,                          )

Example (continued):

Magnitude frequency response Transition band
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Digital Filters

Design of IIR Filters – Part 27

Characteristics of commonly used analog filters – Part 10

Phase response Pole/zero locations

Butterworth filters (continued)

Properties of the resulting digital filter (transformation by the bilinear transform,                          )

Example (continued):
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Digital Filters

Design of IIR Filters – Part 28

Characteristics of commonly used analog filters – Part 11

Chebyshev filters

Two types of Chebyshev filters:

❑ Type 1 filters are all-pole filters with equiripple behavior in the passband and monotonic characteristic 
(similar to a Butterworth filter) in the stopband.

❑ Type 2 filters have poles and zeros (for finite s), and equiripple behavior in the stopband, but a monotonic 
characteristic in the passband.
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Digital Filters

Design of IIR Filters – Part 29

Type 1 Chebyshev filters

Squared magnitude 
frequency response:

where    is a parameter 
related to the passband
ripple, and             is the 

-th order Chebyshev
polynomial (see next slide).

Characteristics of commonly used analog filters – Part 12
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Digital Filters

Design of IIR Filters – Part 30

Characteristics of commonly used analog filters – Part 13

Type 1 Chebyshev filter (continued)

The Chebyshev polynomial is defined as

and can be obtained by the recursive equation

Examples:

❑

❑

❑

represents a polynom of degree     in    .
Chebyshev behavior (minimizing the maximal error) in the passband (or in the stopband for 2 type filters)
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Digital Filters

Design of IIR Filters – Part 31

Characteristics of commonly used analog filters – Part 14

Type 1 Chebyshev filter (continued)

The filter parameter    is related to the passband ripple:

For     odd:

For      even:

At the passband edge frequency                      we have                       such that

which establishes a relation between the passband ripple      and the parameter    .
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Digital Filters

Design of IIR Filters – Part 32

Characteristics of commonly used analog filters – Part 15

Type 1 Chebyshev filter (continued)

Typical squared magnitude frequency responses for a Chebyshev type 1 filter (              ):

[Proakis, Manolakis, 1996]



•

Digital Signal Processing and System Theory | Advanced Digital Signal Processing| Digital Filters Slide 153

Digital Filters

Design of IIR Filters – Part 33

Characteristics of commonly used analog filters – Part 16

Type 2 Chebyshev filter 

Squared magnitude 
frequency response:
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Digital Filters

Design of IIR Filters – Part 34

Characteristics of commonly used analog filters – Part 17

Type 2 Chebyshev filter 

Estimation of the filter order:

Chebyshev filters only depend on the parameters                  and the ratio                    .
Using these values, it can be shown that the required order can be estimated as 
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Digital Filters

Design of IIR Filters – Part 35

Characteristics of commonly used analog filters – Part 18

Type 2 Chebyshev filter 

Typical squared magnitude frequency responses for a Chebyshev type 2 filter (              ):

[Proakis, Manolakis, 1996]
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Digital Filters

Design of IIR Filters – Part 36

Characteristics of commonly used analog filters – Part 19

Elliptic (Cauer) filters

❑ Elliptic filters have equiripple (Chebyshev) behavior in both pass- and stopband.

❑ The transfer function contains both poles and zeros, where the zeros are located on the       -axis.

❑ The squared magnitude frequency response

where                  denotes the Jacobian elliptic function of order    , and the parameter    controls the passband ripple.

❑ The filter design is optimal in pass- and stopband in the equiripple sense:
However, other types of filters may be preferred due to their better phase response characteristics 
(i.e. approximately linear-phase), for example the Butterworth filter.   
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Digital Filters

Design of IIR Filters – Part 37

Characteristics of commonly used analog filters – Part 20

Elliptic (Cauer) filters
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Digital Filters

Design of IIR Filters – Part 38

Characteristics of commonly used analog filters – Part 21

Elliptic (Cauer) filters (continued)

Characteristic squared magnitude frequency responses for a elliptic filter (              ):

[Proakis, Manolakis, 1996]
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Digital Filters

Design of IIR Filters – Part 39

Characteristics of commonly used analog filters – Part 22

Elliptic (Cauer) filters (continued)

Estimation of the filter order:

Required order to achieve the specifications with the parameters              and  
(                                                                             ):

where           denotes the complete elliptic integral of the first kind (tabulated) 
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Digital Filters

Summary

❑ Introduction

❑ Digital processing of continuous-time signals

❑ DFT and FFT

❑ Digital filters

❑ Structures for FIR systems

❑ Structures for IIR systems

❑ Coefficient quantization and round-off effects

❑ Design of FIR filters

❑ Design of IIR filters 

❑ Multi-rate digital signal processing


