

Anmerkungen zur Übung

Owe Wisch

Digitale Signalverarbeitung und Systemtheorie (DSS)

Büro: F-006

Telefon: 0431 880-6143

E-Mail: timw@tf.uni-kiel.de

Sprechstunden: Einfach vorbeikommen oder einen Termin per E-

Mail vereinbaren.

Verlauf der Übung

- Es werden Übungsaufgaben verteilt. Die Aufgabe für die folgende Übung sollen als Vorbereitung zu Hause bearbeitet werden.
- Die Lösungen der Aufgaben werden in der Übung präsentiert.
- Fragen zum Übungsmaterial, zur Lösung und zum Verständnis können jederzeit gestellt werden.

Prüfung

- Mündlich
- Termin nach Absprache

Literatur

• Siehe Information in der Vorlesung

Für Updates und Downloads kann die Homepage besucht werden https://dss.tf.uni-kiel.de/index.php/teaching/lectures/lecture-digital-signal-processing

Digitale Signalverarbeitung und Systemtheorie, Prof. Dr.-Ing. Gerhard Schmidt, www.dss.tf.uni-kiel.de Digitale Signalverarbeitung, Übung SS 2021

Symbol	Bedeutung/Verwendung
t	Kontinuierliche Zeitvariable
n	Diskrete Zeitvariable
$\delta_0(t)$	Zeitkontinuierliches Impulssignal
$\gamma_0(n)$	Diskreter Einheitsimpuls
$\gamma_{-1}(n)$	Diskrete Sprungfunktion
ω	Analoge Frequenz in Radiants pro Sekunde
	$\omega = 2\pi/T$
$T_{ m A}$	Abtastperiode in Sekunden
f	Analoge Frequenz in Hz
$f_{ m A}$	Abtastfrequenz in Hz
Ω	Digitale Frequenz in Radiants
	$\Omega = 2\pi f/f_{\rm s}$
$v(t) \circ - V(j\omega)$	Zeitkontinuierliche Fourier Transformation
$v(n) \circ - V(e^{j\Omega})$	Zeitdiskrete Fourier Transformation
$v(n) \circ - V(\mu)$	Diskrete Fourier Transformation (DFT)

Aufgabe 1 (Abtastung)

- (a) Welche Vorteile bietet die digitale Verarbeitung von Signalen im direkten Vergleich zur analogen Verarbeitung?
- (b) Angenommen, ein beliebiges Signal wird mit einer Abtastfrequenz f_A abgetastet, welche Bedingung muss eingehalten werden, damit die im Signal enthaltenen Informationen vollständig erhalten bleiben?
- (c) Erläutern Sie den Begriff aliasing.
- (d) Warum ist es schwierig, eine ideale Abtastung in Realität durchführen? Wie sieht eine reale Abtastung aus?

Aufgabe 2 (Quantisierung)

Das Signal $v_0(t)$ soll digitalisiert werden. Dazu wurde es bereits abgetastet (v(n)) und soll nun quantisiert werden $(v_Q = [v(n)]_Q)$. Der Aussteuerungsbereich des Signales liegt bei $-4 \le D \le 4$ und es soll eine Wortlänge w = 4 zur Quantisierung verwendete werden. Dazu soll eine mid-tread-Kennlinie verwendet werden.

- (a) Wie viele Quantisierungsstufen werden so erzielt und wie groß ist eine dieser Stufen?
- (b) Zeichnen Sie die Quantisierungskennlinie i(v). Welche Unterschiede bestehen zu einer mid-rise-Kennlinie?
- (c) Geben Sie unter der Annahme, dass alle Amplitudenwerte mit einer gleichen Wahrscheinlichkeit auftreten, die Wahrscheinlichkeitsdichte des Quantisierungsrauschens an und zeichnen Sie diese. Geben Sie zusätzlich den Mittelwert $m_{b,1}$ und die Varianz $\sigma_{b,1}^2$ des Quantisierungsrauschens an. Was könne Sie über das Leistungsdichtespektrum des Quantisierungsrauschens sagen?
- (d) Nehmen Sie nun eine Wortlänge von w=6 an und berechnen Sie erneut den Mittelwert $m_{b,2}$, die Varianz $\sigma_{b,2}^2$ und das Leistungsdichtespektrum des Quantisierungsrauschens. Was können Sie über die Leistungsdichtespektren des Quantisierungsrauschens aus Aufgabenteil (c) und (d) sagen.