Questions A

A1. How can the short-time PSD of the background noise be estimated?

- □ Which are the two noise estimation schemes presented in the lecture?
- Propose another scheme to estimate noise!

A2. Frequency-domain solution of the Wiener Filter

- □ The frequency-domain solution for orthogonal signals is: ...
- Describe the magnitude frequency response in your own words for the two extrema: only noise; only speech.

A3. Explain the method of minimum tracking for noise estimation.

- Describe the method in your own words!
- \Box Which influence do the parameters β , Δ_{inc} and Δ_{dec} have?

A4. What is musical noise?

What is musical noise and what is its origin?

Answers B

- B1. What are the design criteria of the Wiener Filter?
 - Compare slides 29 and 33; optimal separation of wanted and unwanted signals; knowledge of statistical properties up to second order of both signals.

B2. Explain the term formant frequency.

Formants are the characteristic resonance frequencies of speech sounds created by the vocal tract.

B3. Explain the noise estimation scheme based on voice activity detection.

- □ In speech pauses, the filter is updated using the parameter β , while speech activity, no adaptation is performed.
- $\square \beta$ controls how much the noise estimate fluctuates and how much of the actual spectrum is estimated as noise
- □ This scheme depends on the robustness of the voice activity detection (VAD) which has higher complexity, but the noise estimate does not rise while speech activity.

B4. What is overestimation?

- The noise estimate is augmented subsequently. Overestimation is applied in order to reduce musical noise.
- □ Fixed and adaptive overestimation: See slides 43, 44.

Questions **B**

B1. What are the design criteria of the Wiener Filter?

□ Enumerate the criteria that were presented in the lecture.

B2. Explain the term formant frequency.

□ In the context of speech modeling, what is the meaning of a formant frequency?

B3. Explain the noise estimation scheme based on voice activity detection.

- Describe the scheme in your own words.
- \Box Which influence has the parameter β ?
- What advantages and what drawbacks are there compared to the method of minimum tracking for noise estimation?

B4. What is overestimation?

- □ Why is an overestimation factor applied to the noise estimate?
- □ Illustrate the presented schemes in your own words.

Answers A

A1. How can the short-time PSD of the background noise be estimated?

- By means of a) tracking of minima, or b) voice activity detection.
- E.g., methods based on multiple microphones, minimum statistics, speech presence probability (SPP)

A2. Frequency-domain solution of the Wiener Filter

The frequency-domain solution is: $H_{\text{opt}}(e^{j\Omega}) = 1 - \frac{S_{bb}(\Omega)}{S_{yy}(\Omega)}.$

□ Only noise: $H_{\text{opt}}(e^{j\Omega}) \to 0$, only speech: $H_{\text{opt}}(e^{j\Omega}) \to 1$.

A3. Explain the method of minimum tracking for noise estimation.

- See lecture slide 41: Smoothing of the PSD; increasing or decreasing the noise estimate in the direction of the smoothed PSD.
- $\square \ \beta$ determines the extent of the smoothing; $\ \Delta_{inc}$ and $\ \Delta_{dec}$ are the step sizes for the adaption.

A4. What is musical noise?

Musical noise is a fast changing tonal sound which is created by the "opening" and "closing" of the Wiener Filter.

