Questions A

A1. Difference equation (slide 5)

- **C** Explain the meaning/function of both summation signs. What entities do $y_m(n-i)$ and $g_{m,i}(n)$ represent?
- □ Which index can be dropped in the case of a fixed beamformer?

A2. Receiving characteristic

- What does a cardioid characteristic look like?
- Have a look on slide 10. Find out in which parameter the dependency on the angle of incidence is hidden.

A3. Delay & Sum

- Describe the delay-and-sum beamformer in your own words.
- \Box Why isn't the time-domain solution simply a delay of τ_m samples?

A4. Interference compensation

- Explain the structure with advantages/drawbacks of one of the presented schemes to block the desired signal.
- Based on the interference compensation, how can the interference signal power be estimated?

Questions B

B1. Have a look at the time delay equation on the bottom of slide 7.

- □ Which units do the variables have?
- □ Show that the units in the equation are consistent.

B2. Beampattern

- Which conditions have to be fulfilled in order to be able to separate the influences of the microphones and of the signal processing?
- Which are the extreme cases of the array gain? I.e., what are the highest and lowest possible gains?

B3. Filter & Sum

- □ What does superdirectivity mean?
- □ What is the optimization criterion of the filter-and-sum beamformer?
- □ Why do we introduce a constraint?
- On slide 25, what is the origin of the sidelobes?

Answers B

B1. Have a look at the time delay equation on the bottom of slide 7.

- \Box $f_s[1/s], c[m/s], r_m[m]$. *r* is dimensionless because of the normalization to 1.
- Consistency check: $[samples] = \frac{[samples/s]}{[m/s]} [m].$

B2. Beampattern

- Condition: The microphones must have the same characteristic (including same direction).
- □ a) lowest: The beamformer has omnidirectional characteristic, Q = 1, $Q_{log} = 0$. b) highest: The beamformer has an extremely thin lobe: Q goes to infinity.

B3. Filter & Sum

- □ A characteristic that is better than delay and sum is called superdirective.
- See slide 20.
- \Box Minimizing $\tilde{u}(n)$ without constraints would lead to all filter coefficients converging to 0.
- The sidelobes can be explained by the microphone distances which are getting larger than half the wave length.

Answers A

A1. Difference equation (slide 5)

- □ Summation signs: 1) Sum over all microphones; 2) Convolution sum.
- \Box $y_m(n-i)$: microphone *m*, sample index n-i.
 - $g_{m,i}(n)$: Filter of microphone m at time index n and filter coefficient i .
- \Box Fixed beamformer: $g_{m,i} \rightarrow$ time index n can be dropped

A2. Receiving characteristic

- See equation on slide 9 and following figure:
 - Angle of incidence of the sound is hidden in the parameter $au_m= au_m(m{r}).$

A3. Delay & Sum

- Gee slides 14, 15.
- \Box τ_m is generally not integer, so the solution is a fractional delay filter (see slides 16, 17).

A4. Interference compensation

- See slides 27-35.
- The output of the interference compensation is an estimate of the interference. Its squared absolute value can be smoothed and used as interference signal power estimate.

