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Questions A

Part 7. Gaussian Mixture Models

❑ On slide 5, how is Σ defined?

❑ On slide 5, how is µ defined? How can µ be initialized with estimates?

A1. Definitions

❑ From the graph on slide 6, estimate values for gk und µk.

❑ Which Σk are diagonal, which are not?

A2. Covariance matrix I

❑ When using the EM algorithm, what problems might appear if only a few feature vectors 
are assigned to a specific class?

❑ How can these problems be avoided?

A3. EM algorithm I

❑ What is the meaning of the variable γ(zk(n))?

❑ Why is the GMM sometimes called “multivariate density model”?

A4. EM algorithm II
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Questions B

Part 7. Gaussian Mixture Models

❑ Motivate that both equations for p(X|g,µ,Σ) on slide 24 are equivalent.

❑ Across what index is the “outer” and the “inner” summation/multiplication applied?

❑ What is the effect of the denominator in the equations on slide 25?

B1. EM algorithm III

❑ Which dimensions does (x(n)-µk
new) have, which dimensions its transpose (slide 26, top)?

❑ Where can the variance of each feature dimension be found in
the matrix (x(n)-µk

new) (x(n)-µk
new)T ?

B2. Covariance matrix II

❑ What is a latent random variable?

❑ For which purpose is it introduced?

B3. Latent random variables

❑ How can a GMM be initialized?

B4. EM algorithm IV
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Answers B

Part 7. Gaussian Mixture Models

❑ The product sign can be put in front of the logarithm, and becomes a summation; Because 
the logarithm is monotonously increasing, the argmax is not being altered.

❑ The “inner” part, across k: Number of Gaussians.
The “outer” part, across n: (Time-) index of the feature vectors.

❑ The denominator works as a normalization of the probabilities.

B1. EM algorithm III

❑ (Dx1) and (1xD), respectively. The result of the multiplication has the dimension (DxD), 
equivalent to the dimension of the covariance matrix.

❑ The variances of each feature dimension can be found at the diagonal of the DxD-matrix.

B2. Covariance matrix II

❑ A latent random variable is a “hidden” random variable, which influences the actual 
random variable and cannot be measured itself.

❑ Here, the latent random variable determines the assignment to a certain Gaussian, which 
cannot be measured.

B3. Latent random variables

❑ See slide 44.

B4. EM algorithm IV
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Answers A

Part 7. Gaussian Mixture Models

❑ Σ is defined by the covariances Σi,j = cov(xi,xj).

❑ µ is defined as the mean value (i.e., the center) of the corresponding Gaussian. 
µ can be initialized using a codebook.

A1. Definitions

❑ The averages µk correspond to the coordinates of the maxima of the Gaussian curves, the 
weights gk correspond to the volume ratios of the Gaussian curves (they sum up to 1).

❑ All Σk are diagonal, except Σk corresponding to the Gaussian at µk = (-0,5; -0,5).

A2. Covariance matrix I

❑ The Gaussian is likely to become a narrow peak (with low variance). See slides 28 and 29.

❑ Avoidance: Definition of a lower limit for the variance.

A3. EM algorithm I

❑ γ(zk(n)) is the classification probability, a soft (or weighted) assignment of a feature vector 
to the k-th Gaussian distribution.

❑ The probability distribution of a multi-dimensional random variable is called multi-
dimensional or multivariate distribution.

A4. EM algorithm II


