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Motivation

❑ On one hand, codebooks are generally able to separate 
„classes“, but on the other hand, they do not reveal the 
probabilities of the observed data.

❑ If one wants to take advantage of the Bayesian probability, one 
has to model and estimate the probability density of the data.

Codebook approaches and their limitations
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Multivariate Gaussian Distributed Probability Densities – Part 1

❑ For a feature vector

we first define single Gaussian densities as

.

❑ In order to approximate arbitrary densities, we use a weighted sum of multiple Gaussian curves:

❑ Constraint for the weights:

Definitions:
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Multivariate Gaussian Distributed Probability Densities – Part 2

Example:
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Uncertainties in Machine Learning – Motivation

Gaussian Mixture Models (GMMs)

Uncertainties in machine learning:

AI-generated picture for the words “trust and doubt”

❑ When do you trust a human being (e.g. a medical doctor)?
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Uncertainties in Machine Learning – Motivation

Gaussian Mixture Models (GMMs)

Uncertainties in machine learning:

AI-generated picture for the words “trust and doubt”

❑ When do you trust a human being (e.g. a medical doctor)?

❑ Two types of uncertainty:

❑ The measured features do not allow a clear (secure) decision
(aleatoric uncertainty). 

This can not be changed, only minimized … 

Well covered by most machine learning approaches.
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Uncertainties in Machine Learning – Motivation

Gaussian Mixture Models (GMMs)

Uncertainties in machine learning:

AI-generated picture for the words “trust and doubt”

❑ When do you trust a human being (e.g. a medical doctor)?

❑ Two types of uncertainty:

❑ The measured features do not allow a clear (secure) decision
(aleatoric uncertainty). 

This can not be changed, only minimized … 

Well covered by most machine learning approaches.

❑ New features that have not been seen in the training data should
be used for a decision (epistemic uncertainty).

This can be measured in addition to standard training procedures.

Currently not often covered by machine learning approaches.
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Uncertainties in Machine Learning – Model of Supervised Learning

Gaussian Mixture Models (GMMs)

Train the model:

Test the model:

Test data PredictionsModel 

Learning 
algorithm

Generalization 
principle

Model training

Training data

Initialization values

AI-generated picture using „Draw an artificial neural network“

Digital Signal Processing and System Theory | Pattern Recognition | Gaussian Mixture Models (GMMs)



Slide 12

Uncertainties in Machine Learning – Mathematical Description Part 1

Gaussian Mixture Models (GMMs)

❑ For a given set of training data

the learning algorithm of supervised learning defines 
the risk (expected loss)

for the possible space of data defined by      and     , using the probability 
density function and the loss function            .

❑ The risk is minimized 

and thus results in the hypothesis (true risk minimizer,  optimal estimator).

Learning 
algorithm

Generalization 
principle

Model training

Training data

Initialization values

Some notation:
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Uncertainties in Machine Learning – Mathematical Description Part 2

Gaussian Mixture Models (GMMs)

❑ For an associated pair                         of training data, the 
empirical risk is defined as

❑ For this the hypothesis

is calculated.

Learning 
algorithm

Generalization 
principle

Model training

Training data

Initialization values

Some notation – continued:
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Uncertainties in Machine Learning – Different Types of Uncertainties

Gaussian Mixture Models (GMMs)

❑ The posterior distribution of the model is updated using the training data to reflect 
the uncertainty about the model. The difference between the true underlying 
relationship (ground truth) and the posterior distribution (best possible)
of the model is the model uncertainty.

❑ The risk function is an estimate of the error of the model on new data. The 
empirical risk funktion is an estimate of the risk function that is calculated using 
the training data. The difference between the empirical risk minimizer          
(trained predictor) and the true risk minimizer                 (best possible) is the 
approximation uncertainty.

Model 
uncertainty

Approximation 
uncertainty

Some notation – continued:
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Uncertainties in Machine Learning – Types of Uncertainty

Gaussian Mixture Models (GMMs)

❑ Epistemic uncertainty (systematic uncertainty) is the uncertainty that arises 
from things that we could know in principle but do not in practice.

❑ Epistemic uncertainty arises from a lack of knowledge and can be reduced 
by acquiring more data.
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❑ Aleatoric uncertainty (statistical uncertainty) is the uncertainty that arises from the 
inherent randomness of the system being modeled. 

❑ This uncertainty can be modeled using probability distributions.

❑ Aleatoric uncertainty cannot be reduced by collecting more data. 

Uncertainties in Machine Learning – Types of Uncertainty

Gaussian Mixture Models (GMMs)
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Aleatoric uncertainty:

Feature 1

Feature 2
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❑ Increasing the dimension of the features can be an effective way to reduce 
aleatoric uncertainty.

❑ It is important to be aware of the limitations of this approach. 

❑ Increasing the dimension of features also requires more data to train the 
model.

❑ The amount of data required to reduce aleatoric uncertainty by increasing 
dimension of features depends on complexity of the system being modeled.

❑ Reduction of aleatoric uncertainty can lead to higher epistemic uncertainty.

Uncertainties in Machine Learning – Types of Uncertainty

Gaussian Mixture Models (GMMs)

Feature 1

Feature 1

Feature 2

Digital Signal Processing and System Theory | Pattern Recognition | Gaussian Mixture Models (GMMs)

Aleatoric uncertainty:



Slide 18

Uncertainties in Machine Learning – Types of Uncertainty

Gaussian Mixture Models (GMMs)

❑ One way to quantify the uncertainties is to estimate probability densities of the individual data points per 
class. 

❑ The probability densities can be used to predict the class of a new data point. For new data, there are 
three possible cases:

1. One probability is high and the others are low: The classification is unambiguous.

2. All probabilities are high: Aleatoric uncertainty is high.

3. All probabilities are low: Epistemic uncertainty is high.
x: new data point

x x x

Classification is unambiguous High aleatoric uncertainty High epistemic uncertainty

Digital Signal Processing and System Theory | Pattern Recognition | Gaussian Mixture Models (GMMs)

Estimation of Uncertainties – Part 1



Slide 19

❑ Second possibility is to train a common model for all data points in the space of features → Gaussian 
Mixture Model.

❑ If the probability is low that new data lie within this model, the epistemic uncertainty is high.

❑ For aleatoric uncertainty, a model is trained that classifies the different classes. 

❑ If the probability that new data belong to a class is approximately the same for all classes, aleatoric 
uncertainty is high.

Estimation of Uncertainties – Part 2

Gaussian Mixture Models (GMMs)

x

High epistemic uncertainty

x: new data point
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Estimation of Uncertainties – Part 1
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Multivariate Gaussian Distributed Probability Densities – Part 2

Example:
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Recognition using Statistical Models

Observed
data

Model of probability densities
(trained based on data of the first hypothesis)

Model of probability densities
(trained based on data of the second hypothesis)

Decision

Decision (1 out of N):

Feature 1 Feature 2

Feature 1 Feature 2
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Fundamentals – Generation of Feature Data

All statistical 
properties are 

known

Statistical parameters 
(mean, variance, ...) Random number 

generator

For each class, the 
observed data is 

known.
The statistical 

properties can be 
estimated.

The data is known, but 
a unique classification 

is no longer possible.
The estimation of 

statistical properties is 
more difficult.
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The Core of the EM Algorithm – Part 1

❑ For a given set of feature vectors

a multivariate density model is to be parameterized in such a way that the observation probability of the feature vectors
defined by this model is being maximized:

Alternatively, the logarithmic probability (which is a monotonically increasing function in the range (0; 1] ) can be 
maximized:

Cost function:
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The Core of the EM Algorithm – Part 2

Model adaption – the E step (E = expectation):

❑ Assumption: An existing model is to be improved. To do so, for each feature vector the classification probability to each 
Gaussian curve is being calculated:

Model adaption – the M step (M = maximization):

❑ Adaption of the mean values:
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The Core of the EM Algorithm – Part 3

Model adaption – the M step (M = maximization):

❑ Adaption of the covariance matrices:

❑ Adaption of the weights:
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The Core of the EM Algorithm – Part 4

Abort condition:

❑ If the new overall probability of the feature space is only slightly increased, 
then break:
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A Difficulty of the EM Algorithm – Part 1

❑ When trying to maximize the cost function

some problems are likely to appear, if only a few feature vectors are assigned to one specific class.

❑ An example: 

For simplicity, we assume we assume diagonal covariance matrices with a fixed value on the diagonal:

Additionally assume that one of the feature vectors is exactly at the mean value of one Gaussian curve:

„Pitfalls“ of the cost function:
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A Difficulty of the EM Algorithm – Part 2

„Pitfalls“ of the cost function:

❑ An example (continued):

If the variances of these Gaussian curves tended to zero,

the contribution of this Gaussian curve at the model evaluation at 
the end of the adaption would tend to infinity – and the optimization 
goal would be reached. 

❑ In order to avoid this case, the variances (i.e., the diagonal entries of 
the covariance matrices) usually are limited to lower bounds. In doing 
so, the minimal „widths“ of the Gaussian curves can be defined.
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Codebooks versus GMMs – Part 1

Model adaption – the E step:

❑ Assumption: An existing model is to be improved. To do so, for each feature vector 
the classification probability to each Gaussian curve is being calculated:

Model adaption – the M step:

❑ Adaption of the mean values:

Instead of the „soft“ classification of the 
feature vectors in the case of GMMs, the 
codebook training uses a „hard“ classification 
(i.e., each feature vector is allocated to exactly 
one class).

The distance function is similar, if the same 
covariance matrices and weights are used for 
all classes.

The adaption of the mean value is similar in 
codebook training (but using binary class 
allocations).



Digital Signal Processing and System Theory | Pattern Recognition | Gaussian Mixture Models (GMMs) Slide 31

•

Gaussian Mixture Models (GMMs)

Codebooks versus GMMs – Part 2

Model adaption – the M step:

❑ Adaption of the covariance matrices:

❑ Adaption of the weights:

The sum of the diagonal elements (trace) of the covariance 
matrices is used for the evaluation in codebook training. 
Especially, the sum of the traces of all classes is used 
(again assuming a binary class allocation).

If a MAP-based (MAP means “maximum a posteriori”) cost 
function is chosen, then the same weighting can be used for the 
codebook (again assuming a binary class allocation). 
Otherwise, for codebooks all weights are chosen to be the 
same.
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Codebooks versus GMMs – Part 3

Combined diagram:
GMM

Mean values of the 
Gaussian curves = 
Codebook entries

Boundaries 
of the codebook 
cells

Feature 1 Feature 2
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Level curves 
of the Gaussian 
curves
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Latent (Hidden) Random Variables – Part 1

Gaussian mixture models:

❑ Assume the following probability density function:

❑ The generation of data based on this model can be interpreted as a two-stage process:

❑ In a first step, a Gaussian curve is randomly chosen to generate a random vector.
The Gaussians are chosen using the probabilities     . In the following, the latent 
(„hidden“) random variable

will be introduced.

❑ In a second step, a random vector is generated based on one single Gaussian:

.
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Latent (Hidden) Random Variables – Part 2

Properties of the latent random variables:

❑ The elements of the latent random vector may be either 0 or 1,

❑ Only one element of the random vector can have the value 1,

❑ The probabilities for the random vector entries are

❑ Hereby, the „vector probability“ can be described as
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Latent (Hidden) Random Variables – Part 3

Properties of the latent random variables:

❑ This indirect approach using the additional latent random process leads to the following 
conditional probabilities:

❑ Using this definition, the Gaussian mixture model can be described as follows:
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Latent (Hidden) Random Variables – Part 4

Properties of the latent random variables:

❑ In order to understand the EM algorithm, we also consider the conditional probability 
that a certain class      was active if a certain feature vector was observed:
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Latent (Hidden) Random Variables – Part 5

Example:

Measured feature space (assumed we know 
by which Gaussian the respective feature 
vectors were generated)

Subsequent (soft) assignment of the feature vectors 
to the (estimated) original distributions (colors 
according to the conditional probabilities)

Feature space that can be observed 
(without knowledge of the generating 
Gaussians)
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The EM Algorithm … Once Again – Part 1

Derivation of the cost function:

Set the derivation to zero:
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The EM Algorithm … Once Again – Part 2

Result up to now:

… insert the conditional probabilities for the latent variables …

… multiply with the covariance matrix and separate the terms in brackets …
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The EM Algorithm … Once Again – Part 3

Result up to now:

A similar approach leads to the new covariance matrix:
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The EM Algorithm … Once Again – Part 4

A similar approach leads to the new covariance matrix:

Resolved:
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The EM Algorithm … Once Again – Part 5

For the calculation of the weights we choose the Lagrange method:

The dervation leads to:

multiply both sides with gk ...
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The EM Algorithm … Once Again – Part 6

Result up to now:

sum over all k ...

Insert in equation above:
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Initialize the EM Algorithm

Initialization using the k-means or the LBG algorithm

❑ In literature, it is often said that the initialization has only low influence on the final converged EM solution. But 
nevertheless it is supposed to do a „reasonable“ initialization.

❑ To do so, a codebook is trained on the basis of the feature data. The resulting codebook vectors are used as mean 
vectors when the GMM is initialized.

❑ Based on all feature vectors that are assigned to a certain codebook vector, an initial value for the covariance matrices 
is generated by „averaging“ over all products of the training vectors times their transposed counterparts.

❑ Finally, the ratio of the number of feature vectors that are assigned to one codebook entry to the overall number of 
feature vectors give an initial value of the weights.



Digital Signal Processing and System Theory | Pattern Recognition | Gaussian Mixture Models (GMMs) Slide 45

•

Gaussian Mixture Models (GMMs)

Fully Populated versus Diagonal Covariance Matrices

Eingangsmerkmal 1

Eingangsmerkmal 1
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Complexity reduction:

❑ If the covariance matrices are fully populated, the computational complexity
is relatively high (approx. D² operations).

❑ If the matrix is diagonal, the computational complexity can be reduced
considerably (to approx. 2D operations). 

❑ To achieve the same quality using diagonal matrices, more distributions are 
necessary.
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Applications in Speech and Audio Signal Processing: Signal Separation

Spectral envelope estimation using Gaussian mixture models:

Preprocessing
(noise 

suppression, ...)

Feature
extraction

GMM 2 (men)

GMM 1 (women)

Short-time
decision

Signal separation
(virtual positions)

Loud-
speaker 
signals

Narrow-band
telephone 

signal
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Applications in Speech and Audio Signal Processing: Speaker Recognition

Preprocessing:
Noise suppression, ...

Feature 
extraction

(with normalization)

Feature vectors Index of the 
most 
probable 
speaker

Accumulation 
of the 

individual 
logarithmic 

probabilities 
over time

GMMs for the 
individual speakers

Speaker recognition using Gaussian mixture models:
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Speaker Recognition – Motivation 

Applications for speaker recognition

❑ Admission control (for supplementation of immobilizer systems in cars or admission to  protected areas or rooms).

❑ Personalization of speech services (systems recognize the user/caller again and  can access preference data bases). 

❑ Improvement of speech signal enhancement schemes (e.g., speaker specific signal reconstruction).

❑ The post-training (optimization) of a speech recognition system can be done speaker dependent. In the case that a speech 
dialog system is used randomly by multiple users, the post-training/adaptation of the recognizer can be speaker-dependent
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Variants of Speaker Recognition – Part 1

Differentiation between verification and identification

Speaker verification: 

Binary decision – is a speaker really the person he pretends to be?

Speaker identification:

1-out-of-N-deciscion – Which one of N speakers is active?
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Variants of Speaker Recognition – Part 2

Differentiation between text-dependent and text-
independent speaker verification

Text-dependent verification: 

The speaker knows a password that he has to 
speak or a new password that has to be spoken is 
provided for every verification.

Text-independent verification:

The speaker‘s utterance is unknown.
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Variants of Speaker Recognition – Part 3

Differentiation between „closed-set“ and 
„open-set“ identification

„closed“ (closed-set)  identification: 

All potential speakers are known in 
advance – no new speakers are 
added later.

„Open“ (open-set) identification:

The potential speakers are not 
known in advance. It is not 
necessarily known, how many 
speakers exist.
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Variants of Speaker Recognition – Part 4

Again, a differentiation 
between text-dependent and 
text-independent variants is 
possible.
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Variants of Speaker Recognition – Part 5

Differentiation between non-discriminant and discriminant training methods

Non-discriminant training: 

The models are trained for each speaker independently, i.e., the model has to fit to the 
extracted training data as good as possible – however, a good discrimination of other 
speakers is not considered.

Discriminant training:

All speakers are considered during the training of the models to fit the individual models not 
only to one speaker, but also to learn the differences between the speaker features.
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Basics of Speaker Recognition – Part 1

Distortion-reducing
preprocessing

and
segmentation

Feature 
extraction

(with
normalization)

Feature vector

Binary
decision

Accumulation
of the single
logarithmic 

probabilities or 
distances over 

time

Model for the features
of the speaker to

be verified

Speaker verification

Universal background
model for other speakers

Feedback of the
decision for 

adapting the model
Short-term spectrum of the

distortion-reduced signal
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Basics of Speaker Recognition – Part 2

Distortion-reducing
preprocessing

and
segmentation

Feature 
extraction

(with
normalization)

Feature vector

1-out-of-(N+1) 
decision

Accumulation of the single
logarithmic probabilities or 

distances over time

New speaker modelSpeaker identification

Universal background
model for other speakers

Generation of a new 
speaker model

Short-term spectrum of the
distortion-reduced signal

Speaker model 1

Speaker model N
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Difficulties in Speaker Recognition

Some typical problems…

❑ In many practical applications only a relatively small amount of training data for the individual speakers is available. 
Additionally, this training data is often not phonetically  „balanced“. During the recognition itself, a decision should be 
made as fast as possible.

❑ As a consequence, text-independent systems become a strong text-dependency: Speaker A speaks words that are 
contained in the small training set of speaker B, but not in his own. That probability to identify speaker B is rather high 
for a small amount of training data.

❑ It is often reported in literature that preprocessing or normalization have a negative influence on the recognition rate. 
This is true if the recording conditions during training and test match well. However, such a match between training and 
test conditions is not always given in practice.

❑ Speech pauses should be removed before the recognition task itself. Otherwise, the background noise will have a strong 
influence on the decision: speakers with similar background noise during recording will be preferred.
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Speaker Recognition – Preprocessing and Segmentation – Part 1

Subband structure:

Analysis
filterbank

Segmentation

Filter characteristic

Input PSD 
estimation

Noise PSD 
estimation

PSD abbreviates power spectral density.
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Speaker Recognition – Preprocessing and Segmentation – Part 2

Noise reduction: Noise reduction without 
limitation of the 
attenuation (needed for the 
segmentation)

Noise reduction with 
limitation of the 
attenuation (needed for the 
signal enhancement)

Segmentation:

If the noise reduction filter is open in 
10…30 percent of all subbands, the 
current frame is classified to contain 
speech.
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Speaker Recognition – Preprocessing and Segmentation – Part 3

Example:

❑ Input signal

❑ Signal after 
noise reduction

❑ Signal after 
segmentation

Time-frequency analysis of the noisy input signal

Time-frequency analysis of the noise-reduced signal

Time-frequency analysis of the segmented noise-reduced signal
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Speaker Recognition – Feature Extraction – Part 1

Mel-filtered cepstral coefficients (MFCCs):

Computation of
the (squared)

magnitude
Mel

filtering Logarithm

Discrete
cosine

transform

❑ The first (zeroth) coefficient of the feature vectors is often replaced by the 
normalized short-term power of the current signal frame.

❑ The normalization is done such that the maximum short-term power of an 
utterance is mapped to a defined value.
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Speaker Recognition – Feature Extraction – Part 2

❑Many publications deal with the selection of features. The most common conclusion is that a compact representation of 
the short-term spectral envelope should be used.

❑MFCCs and cepstral coefficients (with slight modification) have proven to be useful.

❑ It is astonishing that these are the same features that are used for speech recognition. In the application of speech  
recognition, the interest is to remove differences between speakers to obtain only information about the words that have  
been spoken.

❑However, it should be mentioned that different preprocessing is used for speaker and speech recognition.

❑As a consequence, it can be concluded that a speaker-specific speech recognition yields better results compared to a non 
speaker-specific one – this can also be observed in practice. For this reason, it is often desired to adapt the models of a 
speech recognition system to the current speaker.

Some remarks:
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Speaker Recognition With Codebooks – Recognition Phase

Speaker-specific
feature codebook

Speaker-specific
threshold codebooks

Speaker identity
under test Test

utterance

Distance calculation with
the background codebook

Distance calculation 
with the speaker-
specific codebook

Distance comparison with consideration
of the speaker specific threshold

Acceptance or rejection of the
speaker identity under test

Flow chart – speaker verification:
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Speaker Recognition With Codebooks– Training Phase 

Flow chart – speaker verification:

Speech data
of a speaker

Speech data
of the background speakers

Feature
extraction

Feature
extraction

Codebook
training

Codebook
training

Save the speaker-specific
feature codebook

Save the speaker-specific
threshold codebook

Save the background
feature codebook

Calculate the speaker-specific
thresholds
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Speaker Recognition With Gaussian Mixture Models – Recognition Phase (Part 1) 

Approach of the speaker verification:

❑ Pose two hypothesis:

❑ If the same „costs“ for different kinds of errors are assumed, the target and the test speaker are decided to be same 
person if

The matrix   contains the feature vectors of the utterance (after noise and speech pauses have been removed).
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Speaker Recognition With Gaussian Mixture Models – Recognition Phase (Part 2)

Approach of the speaker verification :

❑ The conditional probabilities can be re-written as follows:

❑ This yields for our condition:

❑ Different speaker probabilities can be modeled by the ratio of       and       .
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Speaker Recognition With Gaussian Mixture Models – Recognition Phase (Part 3) 

Feature 1 Feature 2

Feature 1 Feature 2

M
u

tu
al

 d
en
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ty

M
u

tu
al
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en

si
ty

Observed
data

Probability density model
(trained on data of hypothesis H0, i.e. on training data of the target speaker)

Probability density model 
(trained on data of hypothesis H1 , i.e. on training data of non-target speaker(s))

Decision

Multiplication with the 
speaker probability

Multiplication with the  
complementary speaker 
probability
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Speaker Recognition With Gaussian Mixture Models – Recognition Phase (Part 4) 

Approach of the speaker verification:

❑ If Gaussian mixture models are used, the (logarithmic) probability density functions are:

The superscripts (s) and (b) denote the individual speaker and background model, respectively.



Digital Signal Processing and System Theory | Pattern Recognition | Gaussian Mixture Models (GMMs) Slide 69

•

Gaussian Mixture Models (GMMs)

Speaker Recognition With Gaussian Mixture Models – Recognition Phase (Part 5) 

❑ The decision rule

can be re-written as follows:

Approach of the speaker verification :
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Results of a Speaker Verification – Part 1

❑ The results are taken from the  dissertation of G. Kolano (work done at the Daimler Research Center in Ulm, see literature 
section for details).

❑A data base with 106 speakers (only male speakers) has been used. The data based consists of English double-digits (i.e., 
the vocabulary is limited).

❑All data has been transmitted over telephone channels. Thus, the bandwidth of the data is approximately 3.8 kHz (8 kHz 
sample rate). Especially for speaker recognition, these are rather bad boundary conditions.

❑Out of the 106 speakers, 33 have been used for training the background models, the remaining 73 have been used for 
the evaluation of the speaker identification.

❑MFCCs have been used as features. They were only computed if the current signal frame has been classified as voiced  
speech.

Boundary conditions:
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Results of a Speaker Verification – Part 2

❑ The background model has the same size as the speaker model for the cases.

❑ Results in terms of error rates:

Model order Codebuch Gaussian
(Number of  codebook entries approach mixture model

or number Gaussian distributions)

4 11.5 % 4.2 %
8 9.6 % 3.0 %

16 8.2 % 2.3 %
32 6.8 % 2.0 %

Comparison between codebooks and GMMs:

Conclusion:

GMMs are – at least in this test –
clearly superior to codebook 
approaches, but …
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Results of a Speaker Verification – Part 3

❑ The covariance matrices of the GMM approach were fully populated. Thus, clearly a larger amount of model parameters 
have been used in this approach and the computational complexity is clearly higher.

❑ Number of model parameters:

Model order Codebook Gaussian
(Number of  codebook entries approach mixture model
or number Gaussian distributions)      

4 68 683
8 136    1367

16 272 2735
32 544 5471

Comparison between codebooks and GMMs:

Conclusion:

… GMMs require clearly more 
memory and computational 
power, compared to codebook 
approaches.
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Results of a Speaker Verification – Part 4

❑ So far, individual thresholds and a priory-probabilities have been trained for each speaker.

❑ Comparison between global and individual thresholds:

Model order Codebook Gaussian
(Number of  codebook entries approach mixture model
or number Gaussian distributions) 

4 12.9 % / 11.5 % 5.3 % / 4.2 %
8 11.1 % /   9.6 %     4.1 % / 3.0 %

16 9.6 % /   8.2 % 3.4 % / 2.3 %
32 8.2 % /   6.8 % 3.0 % / 2.0 %

Comparison between global and individual thresholds:

Conclusion:

By training the thresholds, the  
recognition rate can be improved  
or the number of parameters can 
be decreased.

Individual
Threshold

Global
threshold
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From Speaker Verification to Speaker Identification

Flow chart – Speaker identification:

Speaker-specific
feature models

Speaker-specific
threshold/distance models

Test
utterance

„Scoring“ with the 
background model

„Scoring“
with the speaker-
specific models

Computation of the best
speaker model or detection
of a new speaker

Adaptation of the „winning“ speaker
model or generation of a new speaker
model

Selection of the best 
speaker model
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Results of a Speaker Identification – Part 1

Boundary conditions:

❑ The results are taken from a publication of D. Reynolds (work done at the MIT, see literature section for details).

❑A data base with 51 speakers (only male speakers) has been used.  The data base consists of English conversations 
(approximately 10 utterances with a duration of 45 seconds each).

❑All data has been transmitted over telephone channels. Thus, the bandwidth of the data is approximately 3.8 kHz 
(8 kHz sample rate).

❑MFCCs have been used as features. Modeling has been done with GMMs, where only diagonal covariance matrices 
have been used.
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Results of a Speaker Identification – Part 2

❑ Length of test and training data vs. recognition rate:

Length Model order Length of test data
of training (number of Gaussian
data distributions)      1 sec 5 sec 10 sec

30 sec 8 54.6 % 79.8 % 86.6 %
16 63.7 % 87.3 % 90.5 %
32 64.6 % 85.3 % 88.4 %

60 sec 8 66.1 % 91.5 % 97.3 %
16 74.9 %                     95.7 %    98.8 %
32 78.6 % 95.6 % 98.3 %

90 sec 8 71.5 % 95.5 % 98.8 %
16 79.0 % 98.0 % 99.7 %
32 84.7 % 98.8 % 99.6 %

Results:
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Adaption of the Models During Run-Time – Part 1

General:

❑After a speaker recognition has been successful (this should be validated e.g. by using a dialog system),  the speaker 
model of the active speaker can be adapted. 

❑Generally, all model parameters can be adapted. However, updating only the mean values of GMMs proved to provide a 
good cost-value ratio. For codebooks, the mean values can be seen as the individual codebook entries, i.e., all parameters 
are adapted.

❑ Both, the amount of  training data and the number of new feature vectors should be considered. 
The codebook adaption can be done according to

where            denotes the new codebook entry and           the old one.        is the number of  vectors that have been used to 
form the entry during training and           is the number of those feature vectors which have been assigned to the 
corresponding codebook vector.
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Adaption of the Models During Run-Time – Part 2

General:

❑ The mean values of GMMs can be updated similar to the codebooks by a modified iteration step of the EM algorithm 
(see last lecture). First, a „soft“ assignment to the individual classes is done (E-step):

Next, the mean values are corrected (M-step) by

The variable        denotes the sum of the „soft“ assignments of the kth class in the last iteration during the training.
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Adaption of the Models During Run-Time – Part 3

Example:

Input feature 1 Input feature1

In
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t 
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 2
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 2
Gaussian distributions
before adaptation

Gaussian distributions
after adaptation

New featue
vectors

New feature
vectors



Digital Signal Processing and System Theory | Pattern Recognition | Gaussian Mixture Models (GMMs) Slide 80

•

Gaussian Mixture Models (GMMs)

Summary and Outlook

Summary:

❑Motivation

❑ Uncertainties in Machine Learning

❑ Basics

❑ Training of GMMs

❑ Initialization of GMMs

❑ Applications examples taken from speech and 
audio processing

❑ Signal separation

❑ Speaker recognition

Next part:

❑ Neural networks


