
Pattern Recognition

Gerhard Schmidt

Christian-Albrechts-Universität zu Kiel
Faculty of Engineering 
Institute of Electrical and Information Engineering
Digital Signal Processing and System Theory

Part 9: Hidden Markov Models (HMMs)



Digital Signal Processing and System Theory | Pattern Recognition | Hidden Markov Models (HMMs) Slide 2

•

Hidden Markov Models (HMMs)

Contents

❑ Motivation

❑ Fundamentals

❑ The „hidden“ part of the model

❑ The inner family of random processes

❑ Fundamental problems of Hidden Markov Models

❑ Efficient calculation of sequence probabilities

❑ Efficient calculation of the most probable sequence

❑ Calculation (estimation) of the model parameters



Digital Signal Processing and System Theory | Pattern Recognition | Hidden Markov Models (HMMs) Slide 3

•

Hidden Markov Models (HMMs)

Motivation

❑ In the previous approaches (vector quantization, Gaussian mixture models), only the probability distribution of multi-
dimensional data vectors was analyzed and used. Their temporal progression was assumed to be uncorrelated.

❑ If also the temporal progression of the observed data vectors should be analyzed, the previous models can be extended 
by a temporal component. This new component will again be derived on a statistical background.

❑ In hidden Markov models, two (or three) statistical components are nested.

❑ While for multivariate amplitude distributions, both discrete and continuous probability distributions can be used, the 
temporal modeling will be done discretely.

Modeling of temporal dependencies



Digital Signal Processing and System Theory | Pattern Recognition | Hidden Markov Models (HMMs) Slide 4

•

Hidden Markov Models (HMMs)

Literature

Hidden Markov Models

❑ B. Pfister, T. Kaufman: Sprachverarbeitung, Springer, 2008 (in German)

❑ C. M. Bishop: Pattern Recognition and Maschine Learning, Springer, 2006

❑ L. Rabiner, B.H. Juang: Fundamentals of Speech Recognition, Prentice Hall, 1993

❑ B. Gold, N. Morgan: Speech and Audio Signal Processing, Wiley, 2000



Digital Signal Processing and System Theory | Pattern Recognition | Hidden Markov Models (HMMs) Slide 5

•

Hidden Markov Models (HMMs)

Common definitions – Part 1

❑ The hidden part of the model is assumed to be a Markov process

with N states. These states are not observable. For the state transitions from one discrete state to another, 
probabilities are specified.

❑ The hidden states govern a second family of random processes, which result in the observable sequence of vectors

.

❑ The sequence of hidden states is denoted as

where the elements           each correspond to one of the hidden states, respectively:

Hidden part of the model (random process) in the Markov model
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Common definitions – Part 2

❑ As soon as the model gets into a new state, the model generates an observation vector. Its distribution is only 
dependant on the new state          , but not on previous ones:

In the following, this probability is denoted as            ,

❑ The state transitions are specified (surprise!) by probabilities. These transition probabilities depend only on the current 
transition’s source and target state, but not on previous states.

Hidden part of the model (random process) in the Markov model

Transition probability

Emission probability
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Common definitions – Part 3

❑ The transition probabilities are abbreviated as follows,

❑ The initial and final states of a HMM are called

initial state, and

final state.

Both states are modeled as “non-emitting”. 
The direct transition from the initial to the final state is forbidden – no observation would be created in this case. 
I.e., for the transition probabilities, the following holds:

Hidden part of the model (random process) in the Markov model

Direct transition from initial to final state

Transitions that leave the final state

Transitions that enter the initial state
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Common definitions – Part 4

State

Transition 
probabilities

Emission 
probability

Hidden part of the model (random process) in the Markov model
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Common definitions – Part 5

❑ The transition probabilities of the model are combined in a transition matrix

.

❑ The constraints are:

Hidden part of the model (random process) in the Markov model
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Types of hidden Markov models – Part 1

Hidden Markov models of the type “left to right”

Transition
matrix

Structure of a left-to-right Markov model

❑ Initial, final and three emitting states are shown. 

❑ Transitions from right to left are not possible.
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Types of hidden Markov models – Part 2

Linear hidden Markov models

Structure of a linear hidden Markov model

❑ Initial, final, and three emitting states are shown. 

❑ Only transitions to the state itself and to right 
neighbors are possible. Consequently, a sequence of 
observations must have at least 3 observations.

Transition
matrix
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Common definitions – Part 6

❑ In order to generate the observation vectors, another random process is assigned to each state. It can be modeled 
either as discrete or as continuous process.

❑ If the generation of the observations is modeled as N-2 discrete processes and each process may have K discrete 
observation states, then the applied probabilities can again be combined in a matrix

.

Again, the following constraints hold:

Generation of observations by a random process
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Common definitions – Part 7

❑ If the generation of observations is modeled as continuous processes using multivariate Gaussian densities (GMMs), 
then the applied probabilities can be defined as follows,

,

assuming that per state K Gaussian distributions are used.

The Gaussian distributions are defined as in the GMM lecture,

with

Generation of observations by a random process
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Common definitions – Part 8

Generation of observations by a random process

Final stateInitial state

Gaussian mixture model
of the first (non-initial) state

Gaussian mixture model
of the second (non-initial) state



Digital Signal Processing and System Theory | Pattern Recognition | Hidden Markov Models (HMMs) Slide 15

•

Hidden Markov Models (HMMs)

Trellis diagrams – Part 1

The initial state always leads 
to the first (non-initial) state.

Time index

State

We assume an HMM of this structure.
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Trellis diagrams – Part 2

Based on state 1, only 
transitions to the states 1, 2,  
and 3 are possible.

Time index

State
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Trellis diagrams – Part 3

All possible transitions based 
on the first state are plotted.

Time index

State
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Motivation

All possible transitions based
on the second state are plotted.

Time index

State
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Trellis diagrams – Part 5

All possible transitions based 
on the third state are plotted.

Time index

State
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Trellis diagrams – Part 6

All possible transitions from 
time index 2 to time index 3 
are plotted.

Time index

State
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Trellis diagrams – Part 7

Now, all possible 
transitions of an 
observation sequence of 
length 10 are plotted.

Time index

State
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Trellis diagrams – Part 8

❑ The transition probabilities are usually denoted at the edges.

❑ The emission probability, that the observed vector          is produced by the corresponding state, is denoted at the nodes.

Meaning of edges and nodes
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Essential problems of hidden Markov models

❑ The probability                 that the hidden Markov model       creates the (given) observation sequence      is to be calculated.

❑ In order to calculate this probability, all possible observation sequences       have to be taken into account. The direct 
calculation (summing over all possible observation sequences) would thus be very time consuming.

Evaluation problem

❑ Besides the probability calculated above, also the state sequence

that creates the observation sequence       with the highest probability, is of interest.

Decoding problem

❑ Based on a huge data base, all parameters of the hidden Markov model are to be estimated.

Estimation problem
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Evaluation problem – Part 1

❑ The probability                 that the hidden Markov model       creates the (given) observation sequence      is to be found.

❑ The wanted probability can be calculated by summing up the conditional production probabilities of all possible 
observation sequences,

❑ This can be written as follows,

❑ In the following we will try to calculate the two conditional probabilities separately.

Evaluation problem
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Evaluation problem – Part 2

❑ In a first step, the production probability is being calculated, that results from the assumption that the state sequence    
is known. We use that the probability of an observation            only depends on the actual state of the HMM – but not of 
previous or subsequent states:

❑ The probability that the sequence        has been selected, can be evaluated as follows:

Evaluation problem
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Evaluation problem – Part 3

❑ The production probability results in

❑ The problem when directly calculating the production probability is the fact that per time index, there are N-2 possible states. 
As a result, for the overall sequence, (N-2)T possible paths exist, so the number of summands is no longer manageable.

❑ As a remedy, the so-called forward algorithm is used. For this purpose the so-called forward probability is defined in a first 
step,

This is the probability that at time index n, the state Si is active and the 
“shortened” observation sequence X(n) could be observed up to now.

Evaluation problem
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Evaluation problem – Part 4

❑ The upper indices specify the shortened versions of the observation matrix and of the state sequence, respectively:

❑ The forward probability can be determined by summing up all possible shortened observation sequences and being at 
state Si at time index n,

Evaluation problem
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Evaluation problem – Part 5

Time index

State
Illustration of the 
forward probabilities

Evaluation problem
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Evaluation problem – Part 6

❑ Because of the independence of the previous states, the forward probabilities can be calculated recursively as follows,

❑ The initialization is done as follows,

❑ Hereby, the production probability of the observed sequence can be determined by summation of the previous forward 
probabilities,

❑ Note that the computational complexity now just grows linearly with the sequence length (instead of growing 
exponentially using direct calculation).

Evaluation problem
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Decoding problem – Part 1

❑ Besides the probability that the hidden Markov model      created the observation vector sequence      , some 
applications require the most probable state sequence. The latter can be defined as follows,

❑ The conditional probability mentioned above can be permuted,

❑ Because                 only depends on the (given) observation sequence, also

can be optimized instead. By this permutation of the cost function, similar quantities as in the previous problem can be 
considered.

Decoding problem
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Decoding problem – Part 2

❑ The most probable state sequence can be calculated efficiently using the so-called Viterbi algorithm. In analogy to the 
explanation of the evaluation problem, the joint probability for the shortened observation vector sequence and the 
optimal shortened state sequence is defined,

❑ The calculation of the probability can again be computed in a recursive way,

❑ For each time index and each state, the index of the state that induced the maximum probability has to be stored, so 
the optimal path can be tracked later on.

Decoding problem
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Decoding problem – Part 3

❑ Initialization

❑ Recursion (Iteration)

❑ Termination

❑ Backtracking of the optimal state sequence

Summary of the Viterbi algorithm
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Decoding problem – Part 4

Time index

State

Initialization
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Decoding problem – Part 5

Recursion for the 
first (non-initial) 
state

Time index

State
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Decoding problem – Part 6

Recursion for the 
first (non-initial) 
state

Time index

State
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Decoding problem – Part 7

Recursion for the 
second state

Time index

State
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Decoding problem – Part 8

Recursion for the 
second state

Time index

State
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Decoding problem – Part 9

Recursion for the 
third state

Time index

State
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Decoding problem – Part 10

Recursion for the 
third state

Time index

State
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Decoding problem – Part 11

Recursion for the 
fourth state

Time index

State
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Decoding problem – Part 12

Recursion for the 
fourth state

Time index

State
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Decoding problem – Part 13

Complete 
recursion

Time index

State
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Decoding problem – Part 14

Termination

Time index

State
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Decoding problem – Part 15

Backtracking
of the optimal 
state sequence

Time index

State
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Generating feature vectors using a hidden Markov model – Part 1

Basics

Final stateInitial state

Gaussian mixture model
of the first state

Gaussian mixture model
of the second state

Transition 
probabilities

Emission 
probabilities



Digital Signal Processing and System Theory | Pattern Recognition | Hidden Markov Models (HMMs) Slide 46

•

Hidden Markov Models (HMMs)

Generating feature vectors using a hidden Markov model – Part 2

Initial state

So-far 
observation sequence

Initial state
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Generating feature vectors using a hidden Markov model – Part 3

Initial state

Transition 
probabilities

Determining the first transition
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Generating feature vectors using a hidden Markov model – Part 4

Generating the first observation vector

Emission 
probabilities

Gaussian mixture model
of the first state

So-far 
observation sequence
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Generating feature vectors using a hidden Markov model – Part 5

Determining the second transition

Transition 
probabilities

Gaussian mixture model
of the first state
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Generating feature vectors using a hidden Markov model – Part 6

Generation of the second observation vector

Gaussian mixture model
of the second state

Emission 
probabilities

So-far 
observation sequence
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Generating feature vectors using a hidden Markov model – Part 7

Gaussian mixture model 
of the second state

Transition 
probabilities

Determining the third transition
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Generating feature vectors using a hidden Markov model – Part 8

Generation of the third observation vector

Gaussian mixture model 
of the second state

Emission 
probabilities

So-far 
observation sequence
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Generating feature vectors using a hidden Markov model – Part 9

Transition 
probabilities

Determining the fourth transition

Gaussian mixture model 
of the second state
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Generating feature vectors using a hidden Markov model – Part 10

Final state

Final state

Overall
observation sequence
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The three problems with hidden Markov models – Part 1

Initial state

Final state

Second model state

❑ After the model topology has been defined, the model parameters are to be estimated.

Emission 
probabilities

Transition 
probabilities

First model state

Main subject of the 
next slides
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The three problems with hidden Markov models – Part 2

❑ After the model topology has been defined, the model parameters are to be estimated.

❑ The probability that a model generates an observed feature sequence has to be calculated in an efficient way.

Observation sequence

Model 1 Model 2

Subject of the 
previous slides
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The three problems with hidden Markov models – Part 3

❑ After the model topology has been defined, the model parameters are to be estimated.

❑ The probability that a model generates an observed feature sequence has to be 
calculated in an efficient way.

❑ The state sequence that generates the observed feature sequence with highest 
probability has to calculated efficiently.

Overall
observation sequence

Also subject of the 
previous slides!
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Lecture Evaluation

❑ Please help to improve the lecture by 
filling out our survey ….
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Solving the estimation problem – Part 1

❑ For one or more given observation sequences       the parameters (transition and emission probabilities) are to be found 
in such a way, that

❑ To do so, we assume that an initial HMM is already existing. This model is optimized iteratively, until a certain 
optimization criterion is fulfilled or a maximum number of iterations was computed.

❑ The iteration methods known so far only are able to find local maxima. 

❑ The most common method is based on a maximum likelihood estimation and is called Baum-Welch or forward-
backward algorithm.

Estimation problem
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Solving the estimation problem – Part 2

❑ In analogy to the forward probability (see previous slides)

we now introduce the backward probability

The partial observation sequence            describes all observations from the nth time index up to the end of the 
sequence,

❑ The backward probability, similar to the forward probability, can be calculated recursively,

❑ The initialization is done as follows,

Backward probability
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Solving the estimation problem – Part 3

Time index

State

Forward and backward probability



Digital Signal Processing and System Theory | Pattern Recognition | Hidden Markov Models (HMMs) Slide 62

•

Hidden Markov Models (HMMs)

Solving the estimation problem – Part 4

Probability distribution over states

❑ Using the forward and backward probabilities, we can calculate the probability that the state Si is active at time index n,

❑ The “normalization” can be calculated either using the forward or the backward probability,
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Solving the estimation problem – Part 5

Probability distribution over states

Time index

State The state Si is active at time index n
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Solving the estimation problem – Part 6

Transition probabilities

❑ Using the forward and backward probability, we can also easily calculate the probability that the state of the hidden 
Markov model changes from state Si to state Sj at time index n,
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Solving the estimation problem – Part 7

Transition probabilities

State Si is active 
at time index n!

State Sj is active 
at time index n!

Time index

State
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Solving the estimation problem – Part 8

Estimation of the Markov transition probabilities

❑ For the next iteration, the following transition probabilities are used,

❑ Additionally, the parameters mentioned above are to be calculated based on multiple observation sequences X and 
averaged before being used in the next step.

Expected average number
of state transitions from
state Si to state Sj

Expected average number of
state transitions that start in 
state Si
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Solving the estimation problem – Part 9

Emission probabilities

❑ In order to determine the individual parameters of 
the Gaussian densities, in a first step a partition of 
the states with multiple Gaussians into multiple 
states with just one Gaussian is performed.
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Solving the estimation problem – Part 10

Emission probabilities

❑ In analogy to the first approach, individual transition probabilities can be calculated for this extended model,

❑ These can again be expressed by forward and backward probabilities,

Probability that a transition from state Si into state Sj was performed at 
time index n while the k-th Gaussian of the state Sj was creating the 
observation vector.
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Solving the estimation problem – Part 11

❑ Summing all transition probabilities over the outgoing states results in the probability that the k-th Gaussian of the j-th state 
generated the observed vector at time index n,

❑ Now, analogously to the “main transition probabilities“, also the GMM parameters can be determined by iteration.

Emission probabilities
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Solving the estimation problem – Part 12

❑ The emission probability was defined as follows,

❑ The adaptation of the weights is done as follows,

❑ The adaption of the averages vectors is done as follows,

Adaption of the GMM parameters

Average number of transitions from the
outgoing state Sj to the incoming state Si

Average number of state transitions
that start in state Sj
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Solving the estimation problem – Part 13

❑ The adaptation of the covariance matrices is performed as follows,

Adaption of the GMM parameters
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Solving the estimation problem – Part 14

Viterbi training

❑ The method to estimate the model parameters that was described above is called Baum-Welch algorithm. 
It is a special case of the EM algorithm that was described in the GMM lecture.

❑ Alternatively, the so-called Viterbi training can be applied. To do so, in a first step the state sequence

with the highest probability is computed.

❑ Then it is assumed that this path was taken with “certain” probability, i.e., it holds
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Solving the estimation problem – Part 15

Viterbi training

❑ For the internal transitions, the following consequently holds,

❑ The subsequent iterations to optimize the model parameters are performed as described at the Baum-Welch algorithm.

❑ Similar to the Baum-Welch algorithm, the iterations are performed until the probability that the model generates the 
observation sequence is no longer increasing significantly or the maximum number of iterations is reached.
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Solving the estimation problem – Part 16

Initializing a hidden Markov model

❑ In a first step, the number of states and their topology is defined (forbidden transitions are marked, i.e. their probability
is set to zero).

❑ Per state, just one Gaussian distribution is used.

❑ While the training is running, the number of Gaussian distributions is gradually increased. For example, the Gaussian 
distributions are doubled and initialized as follows,

❑ This is repeated until the probability that the model generates the training sequences is no longer increased significantly 
or a maximum number of parameters is reached.
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Summary and Outlook

Summary:

❑ Motivation

❑ Basics

❑ The „hidden“ part of the model

❑ The „inner“ random processes

❑ Basic problems of Hidden Markov Models

❑ Efficient computation of the probabilities of state sequences

❑ Efficient computation of the most probable sequence 

❑ Computation (estimation) of the parameters of the model

Next part:

❑ Explainable artificial intelligence


