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Signals and Systems II
Exam SS 2023

Examiner: Prof. Dr.-Ing. Gerhard Schmidt
Room: CAP3, Hörsaal 2
Date: 18.09.2023
Begin: 09:00 h
Reading Time: 10 minutes
Working Time: 90 minutes

Notes

• Lay out your student or personal ID for inspection.

• Label each paper with your name and matriculation number. Please use a new

sheet of paper for each task. Additional paper is available on request.

• Do not use pencil or red pen.

• All aids – except for those which allow the communication with another person –
are allowed. Prohibited aids are to be kept out of reach and should be turned off.

• The direct communication with any person who is not part of the exam supervision
team is prohibited.

• For full credit, your solution is required to be comprehensible and well-reasoned. All
sketches of functions require proper labeling of the axes. Please understand that the
shown point distribution is only preliminary!

• In case you should feel negatively impacted by your surroundings during the exam,
you must notify an exam supervisor immediately.

• The imminent ending of the exam will be announced 5 minutes and 1 minute prior
to the scheduled ending time. Once the end of the exam has been announced, you
must stop writing immediately.

• At the end of the exam, put together all solution sheets and hand them to an exam
supervisor together with the exam tasks and the signed cover sheet.

• Before all exams have been collected, you are prohibited from talking or leaving your
seat. Any form of communication at this point in time will still be regarded as an
attempt of deception.

• During the reading time, working on the exam tasks is prohibited. Conse-
quently, all writing tools and other allowed aids should be set aside. Any violation
of this rule will be considered as an attempt of deception.
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Task 1 (35 points)

Task 1 (35 points)

Part 1 This part of the task can be solved independently of parts 2 and 3.

Let the probability distribution Fv(v) of the ergodic random process with statistically
independent values be given by:

Fv(v) =





0, for v < π,
2
π

(v − π), für π ≤ v < 3π
2 ,

1, for 3π
2 ≤ v.

(a) Sketch the probability distribution Fv(v). (2 P)

0 0.5 1 1.5 2
0

1

v
π

F
v
(v

)

(b) Determine the probability density fv(v). (2 P)

fv(v) =





0, für v < π,
2
π

, für π ≤ v < 3π
2 ,

0, für 3π
2 ≤ v.

(c) Determine (3 P)

(i) the linear mean value mv,

(ii) the variance σ2
v and

(iii) (as a numerical value) the root mean square value m
(2)
v

of the probability density fv(v).

(i)

mv =

∞∫

−∞

vfv(v)dv

mv =
vmax + vmin

2
=

3π
2 + π

2
=

5π

4
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Task 1 (35 points)

(ii)

σ2
v =

1

12
(vmax − vmin)2 =

π2

48

(iii)

m(2)
v = m2

v + σ2
v ≈ 4,1326

(d) Determine the power density spectrum Svv(ejΩ). (4 P)
Since the process has statistically independent values, these are also uncorrelated
and the result is for the autocorrelation function:

svv(κ) = m2
v + σ2

vγ0(κ).

The following therefore applies to the power density spectrum:

Svv(ejΩ) = F{svv(κ)} = 2π · m2
v

∞∑

κ=−∞

δ0(Ω − λ2π) + σ2
v .

Part 2 This part of the task can be solved independently of parts 1 and 3.

Given an equally distributed discrete random process v1(n) whose probability density
function is defined to be non-zero within the range of values v1 ∈ [1, 4].

(e) Determine the associated probability density function fv1
(v1) and draw it. Please (2 P)

label all axes!
Since this is an equally distributed random process, the following probability density
function results:

1 2 3 4

1/3

v1

fv1
(v1)

Furthermore, a second random process v2(n), which is statistically independent of v1(n),
is to be considered. This is defined by the following probability density function:
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Task 1 (35 points)

-3 -2 -1 1 2 v2,max

2/9

v2

fv2
(v2)

(f) Determine the value v2,max. (2 P)
With

∞∫

−∞

fv2
(v2)dv2 = 1,

a closer look reveals v2,max = 3

(g) Give the probability density function fv2
(v2) in mathematical form. (3 P)

fv2
(v2) =





2
9v2 + 2

3 , for − 3 ≤ v2 < −2,
2
9 , for − 2 ≤ v2 < 1,
2
9v2 − 2

9 , for 1 ≤ v2 < 2,

−2
9v2 + 2

3 , for 2 ≤ v2 < 3,

0, else.

(h) Determine the composite probability density fv1,v2
(v1, v2) of the two processes v1(n) (6 P)

and v2(n). In a plane spanned by v1 and v2, mark the area in which fv1,v2
(v1, v2) > 0

holds.
Since statistical independence applies:

fv1,v2
= fv1

(v1) · fv2
(v2).

Thus it follows:

fv1,v2
=





2
27v2 + 2

9 , for 1 ≤ v1 < 4 and − 3 ≤ v2 < −2,
2
27 , for 1 ≤ v1 < 4 and − 2 ≤ v2 < 1,
2
27v2 − 2

27 , for 1 ≤ v1 < 4 and 1 ≤ v2 < 2,

− 2
27v2 + 2

9 , for 1 ≤ v1 < 4 and 2 ≤ v2 < 3,

0, else.
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Task 1 (35 points)

-3 -2 -1 1 2 3

1

4

v2

v1

Part 3 This part of the task can be solved independently of parts 1 and 2.

Given the following composite probability densities and probability density functions:

fa(a) =

{
2
5a + 1

4 , for 2 ≤ a < 3,

0, else.
fb(b) =





1
4 , for − 2 ≤ b < −1,

−1
4b, for − 1 ≤ b < 0,

1
4b, for 0 ≤ b < 1,
1
4 , for 1 ≤ b < 3,

0, else.

Fc(c) =





0, for c < −π
2 ,

1
π

c + 1
2 , for − π

2 ≤ c < π
2 ,

1, else.

Fd(d) =





0, for d < 3
4 ,

d − 3
4 , for 3

4 ≤ d < 3
2 ,

3
4 , for 3

2 ≤ d < 5
2 ,

1
3d − 1

9 , for 5
2 ≤ d < 7

2 ,

1, for 7
2 ≤ d.

(i) Which of the given probability densities or distribution functions are correct? State (5 P)
them and explain which conditions have to be fulfilled!
Density: Integral identical 1, no function values less than 0 -> satisfied by fb(b)

Distribution function: Limit against −∞ identical 0, limit against ∞ identical 1,
monotonically increasing -> satisfied by Fc(c)

(j) Sketch the associated distribution function F?(?) to the probability density f?(?) you (4 P)
identified as candidates in (i).
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Task 1 (35 points)

−2 −1 1 2 3

0,125
0,25

0,375
0,5

1

b

Fb(b)

(k) Give the associated probability density f?(?) to the distribution function F?(?) you (2 P)
identified as a candidate in (i) as a function!

fc(c) =





0, for c < −π
2 ,

1
π

, for − π
2 ≤ c < π

2 ,

0, else.
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Task 2 (32 points)

Task 2 (32 points)

Part 1 This part of the task can be solved independently of parts 2 and 3.

Given the following difference equation of a linear time-invariant system with input v(n)
and output y(n):

y(n + 1) = 2y(n + 2) − 2v(n + 1) − v(n) + 2v(n − 1) − 4v(n − 2) + 4v(n − 3).

(a) What is the transfer function H(z) of the system? (3 P)

H(z) =
Y (z)

V (z)
=

z−1 + 1
2z−2

− z−3 + 2z−4 − 2z−5

1 − 1
2z−1

= z−1 z

z − 1
2

+
1

2
z−2 z

z − 1
2

− z−3 z

z − 1
2

+ 2z−4 z

z − 1
2

− 2z−5 z

z − 1
2

(b) What is the impulse response of the system? Draw it for −3 < n < 7. (6 P)
Inverse z-transformation of the result from (a) (or excitation of the system with
v(n) = γ0) yields:

h0(n) =

(
1

2

)n−1

γ−1(n − 1) +
1

2

(
1

2

)n−2

γ−1(n − 2) −

(
1

2

)n−3

γ−1(n − 3)

+ 2

(
1

2

)n−4

γ−1(n − 4) − 2

(
1

2

)n−5

γ−1(n − 5)

−2 1 2 4

-1

-0.5

0.5

1

1.5

3 5 6
n

h0(n)

(c) Does the system have a direct pass? Justify both on the basis of your result from (1,5 P)
subtask (a) and on the basis of your result from subtask (b).
No, because the numerator degree in the transfer function H(z) is smaller than the
denominator degree and the impulse response h(n) is at the position h(0) = 0.

Part 2 This part of the task can be solved independently of parts 1 and 3.
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Task 2 (32 points)

Let the state space model be described by the following equations of state:

x(n + 1) = A x(n) + B v(n), (1)

y(n) = C x(n) + D v(n). (2)

Furthermore, a system is defined that is parameterised with the following four matrices:

A =

[
1 0
3
4

1
4

]
, B =

[
2
1
2

]
, C =

[
0 2

]
, D =

[
0
]

.

(d) Determine the transfer function H(z). Simplify the result as much as possible. (6 P)
Note: In the last step, simplify the result so that the highest denominator degree
in the transfer matrix is 1.

H(z) = C · [z · I − A]−1 · B + D

=
[
0 2

]
·

[
z · I −

[
1 0
3
4

1
4

]]−1

·

[
2
1
2

]
+

[
0
]

=
1

(z − 1)(z − 1
4 )

·
[
0 2

]
·

[
z − 1

4 0
3
4 z − 1

]
·

[
2
1
2

]

=
1

(z − 1)(z − 1
4 )

·
[

3
2 2z − 2

]
·

[
2
1
2

]

=
3 + z − 1

(z − 1)(z − 1
4 )

=
z + 2

(z − 1)(z − 1
4 )

(e) Determine the impulse response h0(n). (2 P)
Due to an error, the original solution of task d) was:

H(z) =
3

z − 1
4

Accordingly, the solution for e) would have been:

h0(n) = Z−1{H(z)}

= Z−1

{
3

z − 1
4

}

= 3

(
1

4

)n−1

γ−1(n − 1), ∀ |z| >

∣∣∣∣
1

4

∣∣∣∣

Since the more complex solution in d) has made task e) more extensive, the correction
has been adjusted accordingly.

(f) Is the system H(z) stable? Justify your answer. (1 P)
Yes, since the system H(z) has a pole of z∞,0 = 1

4 and thus satisfies the stability
condition |z∞| < 1.
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Task 2 (32 points)

Part 3 This part of the task can be solved independently of parts 1 and 2.

Let the following system be given:

V0(z) H0(z) H3(z) H4(z) Y0(z)

V1(z) H1(z)

V2(z) H2(z)

Hges(z)

(g) Determine Hges(z) as a function of Hi(z), i ∈ [0,1,2,3,4]. What do the individual (5 P)
elements of Hges(z) describe?

Let V (z) = [V0(z), V1(z), V2(z)]T, where Vi(z) describes the z-transformation of vi(n)
with i ∈ [0, 1, 2].

Y0(z) = Hges(z) V (z) =
[
H0,0(z) H1,0(z) H2,0(z)

]
·




V0(z)
V1(z)
V2(z)




Hi,0 thus describes the influence of input vi on output y0. This results in:

Hges(z) =
[
H0(z)H3(z)H4(z) H1(z)H3(z)H4(z) H2(z)H4(z)

]
.

Only the transmission path from V0(z) to Y0(z) is now considered (V1(z) and V2(z) are
zero and therefore negligible). Furthermore, let hold:

H0(z) =
z − 1

4

z + 1
4

, H1(z) =
z

z2 − 1
4

, H2(z) =
z + 1

4

z2 + 1
4z − 1

8

,

H3(z) =
z + 1

4

(z − 1
4)(z + 1)

, H4(z) =
z + 1

z2 − 1
16

.

(h) Draw the pole/zero diagram for the transmission path under consideration. (4,5 P)
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Task 2 (32 points)

H0,0(z) = H0(z) H3(z) H4(z)

=
z − 1

4

z + 1
4

z + 1
4

(z − 1
4)(z + 1)

z + 1

z2 − 1
16

=
(z − 1

4)(z + 1
4 )(z + 1)

(z + 1
4)(z − 1

4 )(z + 1)(z2 − 1
16)

=
1

z2 − 1
16

=
1

(z − 1
4)(z + 1

4 )

The system has two poles. The first pole is at z∞,0 = 1
4 and the second at z∞,1 = −1

4 .
This results in the following pole/zero diagram:

Re{z}

Im{z}

−1 −

1

2
1

1

2

1

1

2

−1

−

1

2

z∞,1 z∞,0

(i) Is the subsystem under consideration: (3 P)

(i) stable,
Yes the system is stable because all pole positions are within the unit circle.

(ii) causal,
Yes, because the numerator degree of the system is smaller than the denomina-
tor degree of the system and thus the output y(n) does not depend on future
input values v(n).
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Task 2 (32 points)

(iii) or minimum phase?
Yes, because no zero lies outside of the unit circle.

Give reasons for your answer in each case.

Signals and Systems II 10



Task 3 (33 points)

Task 3 (33 points)

Part 1 This task part can be solved independently of part 2 and part 3.

(a) What causes amplitude errors in angle-modulated signals and how can this signal (2 P)
distortion be compensated for on the receiving side?
Amplitude errors are not critical with angle modulation. The distortion can be
(largely) compensated for by a limiter amplifier followed by a bandpass filter .

Part 2 This part of the task can be solved independently of part 1 and part 3.

Given the system from Figure 1 for transmitting the signal v(n).

v(n) u(n)

s(n)

b(n) x(n) y(n)

c1(n) c2(n)

Transmitter

SD{·}

Channel Receiver

Figure 1: Transmission link

Let the spectrum V
(
ejΩ

)
= F {v(n)} be given by

V
(
ejΩ)

=

{
−1 −

( π
4

−|Ω+λ·2π|)
π
4

, falls −π
4 ≤ Ω + λ · 2π ≤ π

4 ,

0 , sonst

(b) Sketch the spectrum V
(
ejΩ

)
= F {v(n)} in the range −π < Ω < π. Label all axes! (2 P)

The spectrum V
(
ejΩ

)
= F {v(n)} is shown in Figure 2.

(c) For modulation, the carrier signal c1(n) = 2 cos(Ωcn) with Ωc = 3
4π is used. Cal- (5 P)

culate the spectrum U
(
ejΩ

)
= F {u(n)} as a function of V

(
ejΩ

)
and draw the real

part of the spectrum U
(
ejΩ

)
in the range of −2π < Ω < 2π. Label all axes! What

is the modulation type?

It is a two-sideband modulation. The following applies to the spectrum:

U
(
ejΩ)

= F {u(n)}

= F {v(n) · c1(n)}

= F {v(n) · 2 cos(2πΩcn)}

=
1

2π
V

(
ejΩ)

⊛


2π

∞∑

λ=−∞

[δ0(Ω + Ωc − 2πλ) + δ0(Ω − Ωc − 2πλ)]




=
[
V

(
ej(Ω+Ωc)) + V

(
ej(Ω−Ωc))]
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Task 3 (33 points)

Re(V
(
ejΩ

)
)

−2

−1

−π
4

π
4 π−π

Ω
0

Figure 2: Spectrum

For the spectrum it follows:

U
(
ejΩ)

=
[
V

(
ej(Ω+Ωc)) + V

(
ej(Ω−Ωc))]

The sketch is shown in Figure 3.

Re(U
(
ejΩ

)
)

−1

−2

−3
4π

−1
2π 3

4π1
2π π−π 2π−2π

Ω
0

Figure 3: Spectrum

(d) Due to a non-interference-free signal transmission, the signal s(n) couples additively (3 P)
with the real-valued spectrum from Figure 4. Calculate the spectrum B

(
ejΩ

)
=

F {b(n)} as a function of U
(
ejΩ

)
and S

(
ejΩ

)
and sketch in the region of −π < Ω < π

the real part of the spectrum B
(
ejΩ

)
. Label all axes!

For B
(
ejΩ

)
= F {b(n)} we get

B
(
ejΩ)

= U
(
ejΩ)

+ S
(
ejΩ)

.

The following follows for the spectrum

B
(
ejΩ)

= U
(
ejΩ)

+ S
(
ejΩ)

.

The sketch is shown in Figure 5.

(e) The demodulation is done with the signal c2(n) = cos(Ωcn + ∆) where ∆ describes (10 P)
a phase error. Calculate the spectrum X

(
ejΩ

)
= F {x(n)} as a function of V

(
ejΩ

)
,

S
(
ejΩ

)
, ∆ and Ωc.
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Task 3 (33 points)

Re(S
(
ejΩ

)
)

1

−π
4

π
4 π−π Ω

Figure 4: Spectrum

Re(B
(
ejΩ

)
)

1

−1

−2

−3
4π −1

2π 3
4π1

2π

−1
4π 0 1

4π

π−π

Ω

Figure 5: Spectrum
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Task 3 (33 points)

X
(
ejΩ)

= F {x(n)}

= F {b(n) · c2(n)}

= F {(v(n) · c1(n) + s(n)) · c2(n)}

= F {v(n) · c1(n) · c2(n) + s(n) · c2(n)}

= F {v(n) · 2 cos(Ωcn) · cos(Ωcn + ∆) + s(n) · cos(Ωcn + ∆)}

= F {v(n) · [cos(−∆) + cos(2Ωcn + ∆)]}︸ ︷︷ ︸
V̂

(
ejΩ

)
+ F {s(n) · cos(Ωcn + ∆)}︸ ︷︷ ︸

Ŝ
(

ejΩ

)

= V̂
(
ejΩ)

+ Ŝ
(
ejΩ)

For a cosine oscillation with a phase error we get:

F {cos(Ωcn + ∆)} = F

{
1

2
(ej(Ωcn+∆) + e−j(Ωcn+∆))

}

= F

{
1

2
(ejΩcnej∆ + e−jΩcne−j∆)

}

=
1

2

(
ej∆F

{
ejΩcn

}
+ e−j∆F

{
e−jΩcn

})

=
ej∆

2
2π

∞∑

λ=−∞

δ0(Ω − Ωc − 2πλ) +
e−j∆

2
2π

∞∑

λ=−∞

δ0(Ω + Ωc − 2πλ)

= ej∆ π

∞∑

λ=−∞

δ0(Ω − Ωc − 2πλ) + e−j∆ π

∞∑

λ=−∞

δ0(Ω + Ωc − 2πλ)

Thus it follows for Ŝ
(
ejΩ

)
:

Ŝ
(
ejΩ)

=
1

2π

[
ej∆ πS(ej(Ω−Ωc)) + e−j∆ πS(ej(Ω+Ωc))

]

=
1

2

[
ej∆S(ej(Ω−Ωc)) + e−j∆S(ej(Ω+Ωc))

]

For V̂
(
ejΩ

)
:

V̂
(
ejΩ)

=V
(
ejΩ)

cos(−∆)+

1

2π

(
ej∆πV (ej(Ω−2Ωc)) + e−j∆πV (ej(Ω+2Ωc))

)

=V
(
ejΩ)

cos(∆) +
1

2

[
ej∆V (ej(Ω−2Ωc)) + e−j∆V (ej(Ω+2Ωc))

]

(f) For the ideal reconstruction the system SD {·} shall be used. The phase error is (2 P)
assumed to be ∆ = 40◦. What properties must this filter have in terms of gain/at-
tenuation and cut-off frequencies?

With the help of an ideal low-pass filter, the original signal can be recovered. The cut-
off frequency should be π

4 and in the passband there should be a gain of 1
cos(40◦· π

180
) .
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Task 3 (33 points)

(g) Can the phase error lead to a complete cancellation of the demodulated useful signal (2 P)
in the baseband? Justify your answer!

The phase error scales the demodulated useful signal. For a phase error of ∆ = π
2 +λπ

with λ ∈ Z the demodulated signal is zero and the transmission does not work!

Part 3 This part of the task can be solved independently of part 1 and part 2.

Given is the instantaneous angular frequency Ωm(t) of a frequency modulated carrier:

Ωm(t) =

{
ω0 + kFM sin(2πf0t), for t ≥ 0,

0, else.

(h) Calculate the associated instantaneous phase Φ(t). (3 P)

Φ(t) =

∫ t

0
Ωm(τ)dτ = ω0t + kFM

∫ t

0
sin(2πf0τ)dτ

= ω0t + kFM

(
1 − cos(2πf0t)

) 1

2πf0
.

(i) Name the advantages and disadvantages of amplitude and angle modulation respec- (4 P)
tively.
Amplitude modulation is simple to implement, requires a small bandwidth and is
more susceptible to interference. Angle modulation requires a large bandwidth and
is more complicated to implement.
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