
R

E

D

obust and

fficient

igital Signal Processing

DSS

Gerhard Schmidt (Editor)

Digital Signal Processing and System�eory

Kiel University

Germany

2018

Version: 0.1 (January 2018)

2

Chapter 1

Recursive Norm Computation

written by Katharina Rebbe, Gerhard Schmidt, and OweWisch

�is chapter is about numerically robustways for
recursive norm computation. In contrast to iter-
ative norm computations, which are numerically
very accurate and robust, recursive approaches
o�er a large reduction in computational com-
plexity. However, a�er several thousand itera-
tions error accumulation appear. To avoid this
a mixed iterative and recursive approach is pro-
posed that is “cheap” in complexity and robust
with respect to error accumulation.

Contents:

1.1 Problem 3
1.2 Recursive Computation 4
1.3 Mixed Computation 5
1.4 References 6
1.5 Code Examples 6
1.6 Authors 10

1 Problem

In several signal processing applications signal vectors that contain the last N sample are utilized. �ose
vectors are usually de�ned as

x(n) =
[

x(n), x(n− 1), x(n− 2), ..., x(n−N + 1)
]T

. (1.1)

Furthermore, some applications require to compute the squared norm of such vectors. A direct computation
according to

∥

∥

x(n)
∥

∥

2

=
N−1
∑

i=0

x2(n− i) (1.2)

is numerically quite robust, but requires alsoN multiplications andN−1 additions every sample. In order to
show the numerical robustness, we generated a signal that containswhiteGaussian noise. Every 1000 samples
we varied the power by 20 dB (up and down in an alternating fashing). From that signal we extracted signal
vectors of lengthN = 128 and computed the squared norm according to Eq. (1.2) in �oating point precision,

3

Recursive Computation

once with 64 bits and once with 32 bits and depict the results in a logarithmic fashion in Fig. 1.1. Additionally,
the di�erence between the two versions is shown in the lowest diagram.

A
m

pl
itu

de

-5000

0

5000

Input signal

dB

60

80

100

120

Norm in double precision
Iteratively computed norm (lifted by 1 dB)

Samples
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

-1000

0

1000

Difference between the norm in high precision and the iteratively computed norm

Figure 1.1: Input signal and iterative norm computations.

2 Recursive Computation

Remark:

�e following ideas (and the solu-

tions) can also be used for other re-

cursive computations such as mean

estimations

y(n) = 1

N

N−1∑

i=0

x(n− i).

If the norm of the signal vector has to be computed every sample, o�en recursive
computations are favoured since this lead to a signi�cant reduction of computational
complexity – especially for signal vectors with a large amount of elements [1]. �e
recursive variant starts with an initialization. Is is assumed that the signal vector
contains zeros at time index n = 0 and thus also the squared norm is initialized
with zero:

x(0) =
[

0, 0, 0, ..., 0
]T
, (1.3)

∥

∥

x(0)
∥

∥

2

= 0. (1.4)

Since with every sample only one new sample value is added to the signal vector and one sample value (the
oldest) is leaving the vector, the norm can be computed recursively according to

∥

∥

x(n)
∥

∥

2

=
∥

∥

x(n− 1)
∥

∥

2

+ x2(n)− x2(n−N). (1.5)

Using this "trick" only twomultiplications and two additions are required to update the norm. However, from
a numerical point-of-view, this computation is not as robust as the direct approach according to Eq. (1.2).

�e problemwith the recursive computation according to Eq. (1.5) is that a squared signal value x2(n) is used
twice in the update rule:

4

Mixed Recursive/Iterative Computation
A

m
pl

itu
de

-5000

0

5000

Input signal

dB

60

80

100

120

Norm in double precision
Recursively computed norm (lifted by 1 dB)

Samples
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

-1000

0

1000

Difference between the norm in high precision and the recursively computed norm

Figure 1.2: Input signal and recursive as well as iterative norm computations.

• once when it enters the signal vector and

• once when it leaves the vector.

If the computation is done in �oating-point arithmetic �rst the mantissa of the values that should be added
or subtracted are adjusted (shi�ed) such that the exponents of both values are equal. �is can be interpreted
as some sort of quantization. If the norm value has changed between the "entering" and the "leaving" event,
a small error occurs. Unfortunately, this error is biased and thus error accumulation appears.

Usually, this is not critical, because the error is really small, but if the signal has large power variations and
the recursion is performed several thousand times, the small error might become rather large.

Due to that problem the norm might get negative, which leads – in some cases – to severe problems. E.g.
several gradient based optimizations perform a division by the norm of the excitation vector. If the norm
gets negative it means that the direction of the gradient is switched and divergence might be the result. �is
could be avoided by limiting the result of the recursive computation by the value 0:

∥

∥

x(n)
∥

∥

2

= max
{

0,
∥

∥

x(n− 1)
∥

∥

2

+ x2(n)− x2(n−N)
}

. (1.6)

�is improves robustness, but does not help against error accumulation as depicted in Fig. 1.2.

3 Mixed Recursive/Iterative Computation

A solution to this error accumulation problem is the extent the recursive computation according to Eq. (1.6)
by an iterative approach that "refreshes" the recursive update from time to time. �is can be realized by
adding in a separate variable Nrec(n) all squared input samples:

5

Code Examples

Nrec(n) =

{

x2(n), if mod (n,N) ≡ 0,

Nrec(n− 1) + x2(n), else.
(1.7)

If N samples are added this variable is replacing to the recursively computed norm and the original sum
Nrec(n) is reinitialized with 0:

∥

∥

x(n)
∥

∥

2

=







Nrec(n), if mod (n,N) ≡ N − 1,

max
{

0,
∥

∥

x(n− 1)
∥

∥

2

+ x2(n)− x2(n−N)
}

, else.
(1.8)

�e additional mechanism adds only a few additions, but helps a lot against error accumulation as indicated
in the last example of this section depicted in Fig. 1.3. �us, if you face problems with norms of signal vectors
you might think about using this mixed method.

A
m

pl
itu

de

-5000

0

5000

Input signal

dB

60

80

100

120

Norm in double precision
Recursively and iteratively computed norm (with limitation, lifted by 1 dB)

Samples
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

-1000

0

1000

Difference between the norm in high precision and the recursively and iteratively computed norm (with limitation)

Figure 1.3: Input signal and mixed recursive/iterative as well as purely iterative norm computations.

4 References

[1] E. Hänsler, G. Schmidt: Acoustic Echo and Noise Control, Wiley, 2004.

5 Code Examples

6

Code Examples

Remark:

�e following code example can be

downloaded via the RED website.

%**
% Parameters

%**
N = 128;

Sig_duration = 10000;

%**
% Generate input signal

%**

% Generate white Gaussian noise

sig = single(randn(Sig_duration,1));

% Boost every second 1000 signal values by 60 dB

for k = 1001:2000:Sig_duration;

sig(k−1000:k) = sig(k−1000:k) * 1000;

end;

%**
% Compute norms

%**
x_vec = single(zeros(N,1));

Norm_rec_curr = single(0);

Norm_rec_curr_lim = single(0);

N_rec = single(0);

C_rec = single(0);

Norm_mixed_curr = single(0);

N_rec_lim = single(0);

C_rec_lim = single(0);

Norm_mixed_lim_curr = single(0);

Norm_double_prec = zeros(Sig_duration,1);

Norm_iterative = single(zeros(Sig_duration,1));

Norm_recursive = single(zeros(Sig_duration,1));

Norm_recursive_lim = single(zeros(Sig_duration,1));

Norm_mixed = single(zeros(Sig_duration,1));

Norm_mixed_lim = single(zeros(Sig_duration,1));

for k = 1:Sig_duration

%**
% Update signal vector (not very efficient, but o.k. for here

%**
x_new = sig(k);

x_old = x_vec(N);

x_vec(2:N) = x_vec(1:N−1);

x_vec(1) = x_new;

%**
% Norm in double precicion

%**
Norm_double_prec(k) = double(x_vec)' * double(x_vec);

%**
% Iterative norm (of course, there exixt optimized Matlab functions

% for this purpose, but that's another "story")

%**
for n = 1:N

Norm_iterative(k) = Norm_iterative(k) + x_vec(n)*x_vec(n);

end;

7

https://dss.tf.uni-kiel.de/index.php/teaching/red-main/red-recursive-computation-of-signal-vector-norms

Code Examples

%**
% Recursive norm computation

%**
Norm_rec_curr = Norm_rec_curr + x_new^2 − x_old^2;

Norm_recursive(k) = Norm_rec_curr;

%**
% Recursive norm computation

%**
Norm_rec_curr_lim = Norm_rec_curr_lim + x_new^2 − x_old^2;

Norm_rec_curr_lim = max(0, Norm_rec_curr_lim);

Norm_recursive_lim(k) = Norm_rec_curr_lim;

%**
% Mixed compuation of the norm

%**
Norm_mixed_curr = Norm_mixed_curr + x_new^2 − x_old^2;

C_rec = C_rec + 1;

if (C_rec == N)

C_rec = 0;

end;

if (C_rec == 0)

N_rec = 0;

end;

N_rec = N_rec + + x_new^2;

if (C_rec == N−1)

Norm_mixed_curr = N_rec;

end;

Norm_mixed(k) = Norm_mixed_curr;

%**
% Mixed compuation of the norm with limiation

%**
Norm_mixed_lim_curr = Norm_mixed_lim_curr + x_new^2 − x_old^2;

Norm_mixed_lim_curr = max(0,Norm_mixed_lim_curr);

C_rec_lim = C_rec_lim + 1;

if (C_rec_lim == N)

C_rec_lim = 0;

end;

if (C_rec_lim == 0)

N_rec_lim = 0;

end;

N_rec_lim = N_rec_lim + + x_new^2;

if (C_rec_lim == N−1)

Norm_mixed_lim_curr = N_rec_lim;

end;

Norm_mixed_lim(k) = Norm_mixed_lim_curr;

end;

%**
% Show results

%**

8

Code Examples

fig = figure(1);

set(fig,'Units','Normalized');

set(fig,'Position',[0.1 0.1 0.8 0.8]);

t = 0:Sig_duration−1;

subplot('Position',[0.07 0.8 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_iterative))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Iteratively computed norm (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.62 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_recursive))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Recursively computed computed norm (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.44 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_recursive_lim))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Recursively computed computed norm with limitation (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.26 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_mixed))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Mixed recursively/iteratively computed norm (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.08 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_mixed_lim))+1,'r');

grid on

xlabel('Samples');

ylabel('dB')

legend('Norm in double precision', ...

'Mixed recursively/iteratively computed norm with limitation (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

9

Authors of this Chapter

6 Authors of this Chapter

Katharina Rebbe received the B.Sc. and M.Sc. degrees from Kiel University, Germany,
in 2016 and 2017, respectively. Since her M.Sc. graduation she works as a development
engineer.

Gerhard Schmidt received the Dipl.-Ing. and Dr.-Ing. degrees from the Darmstadt Uni-
versity of Technology, Darmstadt, Germany, in 1996 and 2001, respectively. A�er the Dr.-
Ing. degree, he worked in the research groups of the Acoustic Signal Processing Depart-
ment, Harman/Becker Automotive Systems and at SVOX, Ulm, Germany. Parallel to his
time at SVOX, he was a part-time Professor with the Darmstadt University of Technol-
ogy. Since 2010, he has been a Full Professor with Kiel University, Germany. His main
research interests include adaptive methods for speech, audio, underwater, and medical
signal processing.

Tim OweWisch received the B.Sc. and M.Sc. degrees from Kiel University, Germany, in
2015 and 2017, respectively. Since his M.Sc. graduation he works as a research assistant
in the Digital Signal Processing and System�eory group at Kiel University. His research
focus is on underwater communication and SONAR signal processing.

10

	Recursive Norm Computation
	Problem
	Recursive Computation
	Mixed Recursive/Iterative Computation
	References
	Code Examples
	Authors of this Chapter

