
R

E

D

obust and

fficient

igital Signal Processing

DSS

Gerhard Schmidt (Editor)

Digital Signal Processing and System�eory

Kiel University

Germany

2018

Version: 0.1 (January 2018)



2



Contents

I Basics 5

1 Fast Convolution 7

1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Code Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Authors of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Recursive Norm Computation 11

2.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Recursive Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Mixed Recursive/Iterative Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Code Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Authors of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Levinson-Durbin Recursion 19

3.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3 Code Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Authors of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Prediction-based Filter Design 23

4.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Authors of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3



CONTENTS

5 Complex Magnitude Approximations 27

5.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.2 A Very Simple Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 A Better Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.5 Authors of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

6 Removal of Signal Trends 29

6.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

6.2 A Simple Method to Remove a Signal O�set . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.3 Removal of Signal Trends by Highpass Filtering . . . . . . . . . . . . . . . . . . . . . . . . 30

6.4 A Non-linear and Time-variant Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.5 Comparison of the �ree Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.6 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.7 Code Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.8 Authors of this Chapter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4



Part I

Basics

5





Chapter 1

Fast Convolution Without Additional

Delay

written by Anton Namenas, Seedo Eldho Paul, and Gerhard Schmidt

�is chapter is about numerically robustways for
recursive norm computation. In contrast to iter-
ative norm computations, which are numerically
very accurate and robust, recursive approaches
o�er a large reduction in computational com-
plexity. However, a�er several thousand itera-
tions error accumulation appear. To avoid this
a mixed iterative and recursive approach is pro-
posed that is “cheap” in complexity and robust
with respect to error accumulation.

Contents:

1.1 Problem 7
1.3 Code Examples 7
1.4 Authors 10

1.1 Problem

In several signal processing applications

1.2 References

[1] E. Hänsler, G. Schmidt: Acoustic Echo and Noise Control, Wiley, 2004.

1.3 Code Examples

7



Code Examples

Remark:

�e following code example can be

downloaded via the RED website.

%**************************************************************************
% Basic parameters

%**************************************************************************
N = 588; % Filter lenght

r = 64; % Frameshift

N_FFT = 128; % FFT size

%**************************************************************************
% Input signal (white Gaussian noise)

%**************************************************************************
x = randn(5000,1); % Input signal

%**************************************************************************
% Impulse response (white Gaussian noise)

%**************************************************************************
h = randn(N,1); % Impulse response

%**************************************************************************
% Pure time−domain convolution

%**************************************************************************
y = conv(x,h); % output signal

%**************************************************************************
% Mixed−domain convolution

%**************************************************************************

%**********************************************************************
% Initialization

%**********************************************************************
x_td_buffer = zeros(N_FFT,1);

h_td = h(1:N_FFT);

y_td = zeros(size(x));

y_fd_res_buffer = zeros(size(x));

y_td_curr = zeros(N_FFT,1);

k_fd = 0;

M = ceil((N−2*r)/r);

X_fd_buffer = zeros(N_FFT/2+1,M);

H_fd_buffer = zeros(N_FFT/2+1,M);

%**********************************************************************
% Fill the frequency−domain filter coefficients

%**********************************************************************
h_ind = N_FFT;

% Loop over all frames

for m = 1:M

%******************************************************************
% Reset impulse response vector

%******************************************************************
h_curr = zeros(r,1);

%******************************************************************
% Fill the vector with the corresponding parts of the impulse res.

%******************************************************************
for n = 1:r

h_ind = h_ind + 1;

if (h_ind <= N)

h_curr(n) = h(h_ind);

end;

end;

8

https://dss.tf.uni-kiel.de/index.php/teaching/red-main/red-fast-convolution-without-additional-delay


Code Examples

%******************************************************************
% Compute FFT

%******************************************************************
H_curr = fft(h_curr,N_FFT);

H_fd_buffer(:,m) = H_curr(1:N_FFT/2+1);

end;

%**********************************************************************
% Main loop

%**********************************************************************
for k = 1:length(x)

%******************************************************************
% Update counters

%******************************************************************
k_fd = k_fd + 1;

if (k_fd > r)

k_fd = 1;

end;

%******************************************************************
% Update the buffer

%******************************************************************
x_td_buffer(1:end−1) = x_td_buffer(2:end);

x_td_buffer(end) = x(k);

%******************************************************************
% Generate time−domain based part of the output

%******************************************************************
y_td(k) = x_td_buffer(end:−1:1)' * h_td + y_fd_res_buffer(k_fd);

%******************************************************************
% Start subsampled processing

%******************************************************************
if (k_fd == r)

%***************************************************************
% Save the result of the previous background processing

%***************************************************************
y_fd_res_buffer = y_td_curr(r+1:end);

%***************************************************************
% Compute FFT on the input, if one full frame is available

%***************************************************************
X_curr = fft(x_td_buffer,N_FFT);

X_curr = X_curr(1:N_FFT/2+1);

%***************************************************************
% Update the FFT buffer

%***************************************************************
X_fd_buffer(:,2:M) = X_fd_buffer(:,1:M−1);

X_fd_buffer(:,1) = X_curr;

%***************************************************************
% Compute the frequency−domain convolution output

%***************************************************************
Y_fd = zeros(N_FFT/2+1,1);

for m = 1:M

Y_fd = Y_fd + X_fd_buffer(:,m) .* H_fd_buffer(:,m);

end;

9



Authors of this Chapter

%***************************************************************
% Compute inverse FFT of the output

%***************************************************************
Y_fd_curr = [Y_fd; conj(Y_fd(end−1:−1:2))];

y_td_curr = ifft(Y_fd_curr);

end;

end;

%**************************************************************************
% Show the result of both convolutions

%**************************************************************************
offset = 2;

lw = 1;

figure(1);

plot(y(1:500),'b','LineWidth',lw);

hold on

plot(y_td(1:500)+offset,'r','LineWidth',lw);

grid on

hold off

legend('Output (time domain)', ...

['Output (mixed domain) + ',num2str(offset)]);

xlabel('Samples')

1.4 Authors of this Chapter

Anton Namenas received the B.Sc. and M.Sc. degrees from Kiel University, Germany, in
2015 and 2016, respectively. Since his B.Sc. graduation he works as a research assistant in
the Digital Signal Processing and System �eory group at Kiel University. His research
focus is on real-time simulation of acoustic environments and automatic evaluation of
speech communication systems.

Seedo Eldho Paul obtained his Bachelor’s degree in 2012 in Electronics and Communi-
cation Engineering from Mahatma Gandhi University, India. He worked for Wipro Ltd.
from 2012 to 2015 as a medical embedded system developer. He is currently doing his
Master in Digital Communications at Kiel University.

Gerhard Schmidt received the Dipl.-Ing. and Dr.-Ing. degrees from the Darmstadt Uni-
versity of Technology, Darmstadt, Germany, in 1996 and 2001, respectively. A�er the Dr.-
Ing. degree, he worked in the research groups of the Acoustic Signal Processing Depart-
ment, Harman/Becker Automotive Systems and at SVOX, Ulm, Germany. Parallel to his
time at SVOX, he was a part-time Professor with the Darmstadt University of Technol-
ogy. Since 2010, he has been a Full Professor with Kiel University, Germany. His main
research interests include adaptive methods for speech, audio, underwater, and medical
signal processing.

10



Chapter 2

Recursive Computation of Signal Vector

Norms

written by Katharina Rebbe, Gerhard Schmidt, and OweWisch

�is chapter is about numerically robustways for
recursive norm computation. In contrast to iter-
ative norm computations, which are numerically
very accurate and robust, recursive approaches
o�er a large reduction in computational com-
plexity. However, a�er several thousand itera-
tions error accumulation appear. To avoid this
a mixed iterative and recursive approach is pro-
posed that is “cheap” in complexity and robust
with respect to error accumulation.

Contents:

2.1 Problem 11
2.2 Recursive Computation 12
2.3 Mixed Computation 13
2.4 References 14
2.5 Code Examples 15
2.6 Authors 18

2.1 Problem

In several signal processing applications signal vectors that contain the last N sample are utilized. �ose
vectors are usually de�ned as

x(n) =
[

x(n), x(n− 1), x(n− 2), ..., x(n−N + 1)
]T

. (2.1)

Furthermore, some applications require to compute the squared norm of such vectors. A direct computation
according to

∥

∥

x(n)
∥

∥

2
=

N−1
∑

i=0

x2(n− i) (2.2)

is numerically quite robust, but requires alsoN multiplications andN−1 additions every sample. In order to
show the numerical robustness, we generated a signal that containswhiteGaussian noise. Every 1000 samples

11



Recursive Computation

we varied the power by 20 dB (up and down in an alternating fashing). From that signal we extracted signal
vectors of lengthN = 128 and computed the squared norm according to Eq. (2.2) in �oating point precision,
once with 64 bits and once with 32 bits and depict the results in a logarithmic fashion in Fig. 2.1. Additionally,
the di�erence between the two versions is shown in the lowest diagram.

A
m

pl
itu

de

-5000

0

5000

Input signal

dB

60

80

100

120

Norm in double precision
Iteratively computed norm (lifted by 1 dB)

Samples
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

-1000

0

1000

Difference between the norm in high precision and the iteratively computed norm

Figure 2.1: Input signal and iterative norm computations.

2.2 Recursive Computation

Remark:

�e following ideas (and the solu-

tions) can also be used for other re-

cursive computations such as mean

estimations

y(n) = 1

N

N−1∑

i=0

x(n− i).

If the norm of the signal vector has to be computed every sample, o�en recursive
computations are favoured since this lead to a signi�cant reduction of computational
complexity – especially for signal vectors with a large amount of elements [1]. �e
recursive variant starts with an initialization. Is is assumed that the signal vector
contains zeros at time index n = 0 and thus also the squared norm is initialized
with zero:

x(0) =
[

0, 0, 0, ..., 0
]T
, (2.3)

∥

∥

x(0)
∥

∥

2
= 0. (2.4)

Since with every sample only one new sample value is added to the signal vector and one sample value (the
oldest) is leaving the vector, the norm can be computed recursively according to

∥

∥

x(n)
∥

∥

2
=

∥

∥

x(n− 1)
∥

∥

2
+ x2(n)− x2(n−N). (2.5)

Using this "trick" only twomultiplications and two additions are required to update the norm. However, from
a numerical point-of-view, this computation is not as robust as the direct approach according to Eq. (2.2).

12



Mixed Recursive/Iterative Computation
A

m
pl

itu
de

-5000

0

5000

Input signal

dB

60

80

100

120

Norm in double precision
Recursively computed norm (lifted by 1 dB)

Samples
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

-1000

0

1000

Difference between the norm in high precision and the recursively computed norm

Figure 2.2: Input signal and recursive as well as iterative norm computations.

�e problem with the recursive computation according to Eq. (2.5) is that a squared signal value x2(n) is
used twice in the update rule:

• once when it enters the signal vector and

• once when it leaves the vector.

If the computation is done in �oating-point arithmetic �rst the mantissa of the values that should be added
or subtracted are adjusted (shi�ed) such that the exponents of both values are equal. �is can be interpreted
as some sort of quantization. If the norm value has changed between the "entering" and the "leaving" event,
a small error occurs. Unfortunately, this error is biased and thus error accumulation appears.

Usually, this is not critical, because the error is really small, but if the signal has large power variations and
the recursion is performed several thousand times, the small error might become rather large.

Due to that problem the norm might get negative, which leads – in some cases – to severe problems. E.g.
several gradient based optimizations perform a division by the norm of the excitation vector. If the norm
gets negative it means that the direction of the gradient is switched and divergence might be the result. �is
could be avoided by limiting the result of the recursive computation by the value 0:

∥

∥

x(n)
∥

∥

2
= max

{

0,
∥

∥

x(n− 1)
∥

∥

2
+ x2(n)− x2(n−N)

}

. (2.6)

�is improves robustness, but does not help against error accumulation as depicted in Fig. 2.2.

2.3 Mixed Recursive/Iterative Computation

A solution to this error accumulation problem is the extent the recursive computation according to Eq. (2.6)
by an iterative approach that "refreshes" the recursive update from time to time. �is can be realized by

13



adding in a separate variable Nrec(n) all squared input samples:

Nrec(n) =

{

x2(n), if mod (n,N) ≡ 0,

Nrec(n− 1) + x2(n), else.
(2.7)

If N samples are added this variable is replacing to the recursively computed norm and the original sum
Nrec(n) is reinitialized with 0:

∥

∥

x(n)
∥

∥

2
=







Nrec(n), if mod (n,N) ≡ N − 1,

max
{

0,
∥

∥

x(n− 1)
∥

∥

2
+ x2(n)− x2(n−N)

}

, else.
(2.8)

�e additional mechanism adds only a few additions, but helps a lot against error accumulation as indicated
in the last example of this section depicted in Fig. 2.3. �us, if you face problems with norms of signal vectors
you might think about using this mixed method.

A
m

pl
itu

de

-5000

0

5000

Input signal

dB

60

80

100

120

Norm in double precision
Recursively and iteratively computed norm (with limitation, lifted by 1 dB)

Samples
0 2000 4000 6000 8000 10000 12000 14000 16000 18000

-1000

0

1000

Difference between the norm in high precision and the recursively and iteratively computed norm (with limitation)

Figure 2.3: Input signal and mixed recursive/iterative as well as purely iterative norm computations.

2.4 References

[1] E. Hänsler, G. Schmidt: Acoustic Echo and Noise Control, Wiley, 2004.

14



Code Examples

2.5 Code Examples

Remark:

�e following code example can be

downloaded via the RED website.

%**************************************************************************
% Parameters

%**************************************************************************
N = 128;

Sig_duration = 10000;

%**************************************************************************
% Generate input signal

%**************************************************************************

% Generate white Gaussian noise

sig = single(randn(Sig_duration,1));

% Boost every second 1000 signal values by 60 dB

for k = 1001:2000:Sig_duration;

sig(k−1000:k) = sig(k−1000:k) * 1000;

end;

%**************************************************************************
% Compute norms

%**************************************************************************
x_vec = single(zeros(N,1));

Norm_rec_curr = single(0);

Norm_rec_curr_lim = single(0);

N_rec = single(0);

C_rec = single(0);

Norm_mixed_curr = single(0);

N_rec_lim = single(0);

C_rec_lim = single(0);

Norm_mixed_lim_curr = single(0);

Norm_double_prec = zeros(Sig_duration,1);

Norm_iterative = single(zeros(Sig_duration,1));

Norm_recursive = single(zeros(Sig_duration,1));

Norm_recursive_lim = single(zeros(Sig_duration,1));

Norm_mixed = single(zeros(Sig_duration,1));

Norm_mixed_lim = single(zeros(Sig_duration,1));

for k = 1:Sig_duration

%**********************************************************************
% Update signal vector (not very efficient, but o.k. for here

%**********************************************************************
x_new = sig(k);

x_old = x_vec(N);

x_vec(2:N) = x_vec(1:N−1);

x_vec(1) = x_new;

%**********************************************************************
% Norm in double precicion

%**********************************************************************
Norm_double_prec(k) = double(x_vec)' * double(x_vec);

%**********************************************************************
% Iterative norm (of course, there exixt optimized Matlab functions

% for this purpose, but that's another "story")

%**********************************************************************
for n = 1:N

Norm_iterative(k) = Norm_iterative(k) + x_vec(n)*x_vec(n);

15

https://dss.tf.uni-kiel.de/index.php/teaching/red-main/red-recursive-computation-of-signal-vector-norms


Code Examples

end;

%**********************************************************************
% Recursive norm computation

%**********************************************************************
Norm_rec_curr = Norm_rec_curr + x_new^2 − x_old^2;

Norm_recursive(k) = Norm_rec_curr;

%**********************************************************************
% Recursive norm computation

%**********************************************************************
Norm_rec_curr_lim = Norm_rec_curr_lim + x_new^2 − x_old^2;

Norm_rec_curr_lim = max(0, Norm_rec_curr_lim);

Norm_recursive_lim(k) = Norm_rec_curr_lim;

%**********************************************************************
% Mixed compuation of the norm

%**********************************************************************
Norm_mixed_curr = Norm_mixed_curr + x_new^2 − x_old^2;

C_rec = C_rec + 1;

if (C_rec == N)

C_rec = 0;

end;

if (C_rec == 0)

N_rec = 0;

end;

N_rec = N_rec + + x_new^2;

if (C_rec == N−1)

Norm_mixed_curr = N_rec;

end;

Norm_mixed(k) = Norm_mixed_curr;

%**********************************************************************
% Mixed compuation of the norm with limiation

%**********************************************************************
Norm_mixed_lim_curr = Norm_mixed_lim_curr + x_new^2 − x_old^2;

Norm_mixed_lim_curr = max(0,Norm_mixed_lim_curr);

C_rec_lim = C_rec_lim + 1;

if (C_rec_lim == N)

C_rec_lim = 0;

end;

if (C_rec_lim == 0)

N_rec_lim = 0;

end;

N_rec_lim = N_rec_lim + + x_new^2;

if (C_rec_lim == N−1)

Norm_mixed_lim_curr = N_rec_lim;

end;

Norm_mixed_lim(k) = Norm_mixed_lim_curr;

end;

%**************************************************************************

16



Code Examples

% Show results

%**************************************************************************
fig = figure(1);

set(fig,'Units','Normalized');

set(fig,'Position',[0.1 0.1 0.8 0.8]);

t = 0:Sig_duration−1;

subplot('Position',[0.07 0.8 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_iterative))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Iteratively computed norm (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.62 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_recursive))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Recursively computed computed norm (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.44 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_recursive_lim))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Recursively computed computed norm with limitation (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.26 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_mixed))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Mixed recursively/iteratively computed norm (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.08 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_mixed_lim))+1,'r');

grid on

xlabel('Samples');

ylabel('dB')

legend('Norm in double precision', ...

'Mixed recursively/iteratively computed norm with limitation (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

17



Authors of this Chapter

2.6 Authors of this Chapter

Katharina Rebbe received the B.Sc. and M.Sc. degrees from Kiel University, Germany,
in 2016 and 2017, respectively. Since her M.Sc. graduation she works as a development
engineer.

Gerhard Schmidt received the Dipl.-Ing. and Dr.-Ing. degrees from the Darmstadt Uni-
versity of Technology, Darmstadt, Germany, in 1996 and 2001, respectively. A�er the Dr.-
Ing. degree, he worked in the research groups of the Acoustic Signal Processing Depart-
ment, Harman/Becker Automotive Systems and at SVOX, Ulm, Germany. Parallel to his
time at SVOX, he was a part-time Professor with the Darmstadt University of Technol-
ogy. Since 2010, he has been a Full Professor with Kiel University, Germany. His main
research interests include adaptive methods for speech, audio, underwater, and medical
signal processing.

Tim OweWisch received the B.Sc. and M.Sc. degrees from Kiel University, Germany, in
2015 and 2017, respectively. Since his M.Sc. graduation he works as a research assistant
in the Digital Signal Processing and System�eory group at Kiel University. His research
focus is on underwater communication and SONAR signal processing.

18



Chapter 3

Levinson-Durbin Recursion

written by Gerhard Schmidt

�is chapter is about ...
Contents:

3.1 Problem 19
3.2 References 19
3.3 Code Examples 19
3.4 Authors 22

3.1 Problem

In several signal processing ...

3.2 References

[1] E. Hänsler, G. Schmidt: Acoustic Echo and Noise Control, Wiley, 2004.

3.3 Code Examples

Remark:

�e following code example can be

downloaded via the RED website.

%**************************************************************************
% Parameters

%**************************************************************************
N = 128;

Sig_duration = 10000;

%**************************************************************************
% Generate input signal

%**************************************************************************

% Generate white Gaussian noise

sig = single(randn(Sig_duration,1));

19



Code Examples

% Boost every second 1000 signal values by 60 dB

for k = 1001:2000:Sig_duration;

sig(k−1000:k) = sig(k−1000:k) * 1000;

end;

%**************************************************************************
% Compute norms

%**************************************************************************
x_vec = single(zeros(N,1));

Norm_rec_curr = single(0);

Norm_rec_curr_lim = single(0);

N_rec = single(0);

C_rec = single(0);

Norm_mixed_curr = single(0);

N_rec_lim = single(0);

C_rec_lim = single(0);

Norm_mixed_lim_curr = single(0);

Norm_double_prec = zeros(Sig_duration,1);

Norm_iterative = single(zeros(Sig_duration,1));

Norm_recursive = single(zeros(Sig_duration,1));

Norm_recursive_lim = single(zeros(Sig_duration,1));

Norm_mixed = single(zeros(Sig_duration,1));

Norm_mixed_lim = single(zeros(Sig_duration,1));

for k = 1:Sig_duration

%**********************************************************************
% Update signal vector (not very efficient, but o.k. for here

%**********************************************************************
x_new = sig(k);

x_old = x_vec(N);

x_vec(2:N) = x_vec(1:N−1);

x_vec(1) = x_new;

%**********************************************************************
% Norm in double precicion

%**********************************************************************
Norm_double_prec(k) = double(x_vec)' * double(x_vec);

%**********************************************************************
% Iterative norm (of course, there exixt optimized Matlab functions

% for this purpose, but that's another "story")

%**********************************************************************
for n = 1:N

Norm_iterative(k) = Norm_iterative(k) + x_vec(n)*x_vec(n);

end;

%**********************************************************************
% Recursive norm computation

%**********************************************************************
Norm_rec_curr = Norm_rec_curr + x_new^2 − x_old^2;

Norm_recursive(k) = Norm_rec_curr;

%**********************************************************************
% Recursive norm computation

%**********************************************************************
Norm_rec_curr_lim = Norm_rec_curr_lim + x_new^2 − x_old^2;

Norm_rec_curr_lim = max(0, Norm_rec_curr_lim);

Norm_recursive_lim(k) = Norm_rec_curr_lim;

20



Code Examples

%**********************************************************************
% Mixed compuation of the norm

%**********************************************************************
Norm_mixed_curr = Norm_mixed_curr + x_new^2 − x_old^2;

C_rec = C_rec + 1;

if (C_rec == N)

C_rec = 0;

end;

if (C_rec == 0)

N_rec = 0;

end;

N_rec = N_rec + + x_new^2;

if (C_rec == N−1)

Norm_mixed_curr = N_rec;

end;

Norm_mixed(k) = Norm_mixed_curr;

%**********************************************************************
% Mixed compuation of the norm with limiation

%**********************************************************************
Norm_mixed_lim_curr = Norm_mixed_lim_curr + x_new^2 − x_old^2;

Norm_mixed_lim_curr = max(0,Norm_mixed_lim_curr);

C_rec_lim = C_rec_lim + 1;

if (C_rec_lim == N)

C_rec_lim = 0;

end;

if (C_rec_lim == 0)

N_rec_lim = 0;

end;

N_rec_lim = N_rec_lim + + x_new^2;

if (C_rec_lim == N−1)

Norm_mixed_lim_curr = N_rec_lim;

end;

Norm_mixed_lim(k) = Norm_mixed_lim_curr;

end;

%**************************************************************************
% Show results

%**************************************************************************
fig = figure(1);

set(fig,'Units','Normalized');

set(fig,'Position',[0.1 0.1 0.8 0.8]);

t = 0:Sig_duration−1;

subplot('Position',[0.07 0.8 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_iterative))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

21



Authors of this Chapter

legend('Norm in double precision', ...

'Iteratively computed norm (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.62 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_recursive))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Recursively computed computed norm (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.44 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_recursive_lim))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Recursively computed computed norm with limitation (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.26 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_mixed))+1,'r');

grid on

set(gca,'XTickLabel','');

ylabel('dB')

legend('Norm in double precision', ...

'Mixed recursively/iteratively computed norm (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

subplot('Position',[0.07 0.08 0.9 0.17]);

plot(t,10*log10(Norm_double_prec),'b', ...

t,10*log10(max(0.01, Norm_mixed_lim))+1,'r');

grid on

xlabel('Samples');

ylabel('dB')

legend('Norm in double precision', ...

'Mixed recursively/iteratively computed norm with limitation (lifted by 1 dB)');

axis([0 Sig_duration−1 0 120]);

3.4 Authors of this Chapter

Gerhard Schmidt received the Dipl.-Ing. and Dr.-Ing. degrees from the Darmstadt Uni-
versity of Technology, Darmstadt, Germany, in 1996 and 2001, respectively. A�er the Dr.-
Ing. degree, he worked in the research groups of the Acoustic Signal Processing Depart-
ment, Harman/Becker Automotive Systems and at SVOX, Ulm, Germany. Parallel to his
time at SVOX, he was a part-time Professor with the Darmstadt University of Technol-
ogy. Since 2010, he has been a Full Professor with Kiel University, Germany. His main
research interests include adaptive methods for speech, audio, underwater, and medical
signal processing.

22



Chapter 4

Prediction-based Filter Design

written by Gerhard Schmidt

In this chapter we will discuss how linear pre-
diction can be used for designing �lters with an
arbitrary frequency response. �e described de-
sign schemes can be used to implement real-time
�lter design applications that can work also on
very simple hardware.

Contents:

4.1 Basics 23
4.2 Application Examples 23
4.3 References 25
4.4 Authors 26

4.1 Basics

In this chapter we will discuss how linear prediction can be used for designing �lters with an arbitrary fre-
quency response. Since linear predictors are used in a variety of applications (e.g. speech coding) various
implementations exist, that solve the so-called normal equations in a robust and e�cient manner. �ese
schemes can be reused to implement real-time �lter design applications that can work also on very simple
hardware.

4.2 Application Examples

Remark:

Before we start with the derivation of

the �lter design itself, the following

applications should motivate the de-

sign process.

Prediction in general means to forecast signal samples that are not yet available (for-
ward prediction) or to reestablish already forgotten samples (backward prediction).
With this capability predictors play an important role in signal processing wherever
it is desirable, for instance, to reduce the amount of data to be transmitted or stored.
Examples for the use of predictors are encoders for speech or video signals.

However, linear prediction can also be used for several other applications:

• Loudspeaker equalization

To improve the playback quality of loudspeakers equalization �lters might be placed before the DA
converters of playback devices (see Fig. 4.1). �ese �lters are designed such that the frequency re-

23



Application Examples

sponse of the system consisting of the loudspeaker itself and the equalization �lter should be close to
a prede�ned curve.

v(n) y(n)

Equalization �lter

Loudspeaker

Figure 4.1: Basic structure of loudspeaker equalization schemes.

If more than one loudspeaker should be equalized o�en additional restrictions such as linear phase
behaviour (constant group delay) are desired. Fig. 4.2 shows an example of such a desired frequency
response together with a non-equalized loudspeaker and its equalized counterpart.

Normalized frequency Ω/π
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

dB

-20

0

20

40

Desired magnitude response
Magnitude response of the equalized loudspeaker

dB

-20

0

20

40

Desired magnitude response
Magnitude response of the loudspeaker (without equalization)

Figure 4.2: Magnitude responses of the non-equalized and the equalized loudspeaker.

• Low-delay noise suppression

Whenever a desired signal is superimposed by noise signal enhancement techniques can be applied
(see Fig. 4.3). Usually, statistically optimized, time-variant �lters such as so-calledWiener �lters [1] are
utilized here.

v(n) y(n)

Time-varying, minimum-phase �lter

Microphone

Figure 4.3: Low-delay noise suppression.

�ose approaches are usually realized in the short-term Fourier domain. However, if the delay that is

24



References

inserted by the Fourier transforms is too large, time-domain approaches with low-order minimum-
phase �lters might be an alternative solution. �e design of these �lters can be prediction-based [2, 3].
Fig. 4.4 shows an example of a noisy speech signal (�lter input) and the corresponding noise-reduced
signal (�lter output).

Time in seconds
0 0.5 1 1.5 2 2.5 3

-1

-0.5

0

0.5

1
Noise-reduced signal (filter output)

-1

-0.5

0

0.5

1
Noisy signal (filter input)

Figure 4.4: Signal before and a�er noise suppression.

• Signal generation

As a last application so-called general purpose noise or signal generators can be mentioned. �ey are
build usually by a white noise generator (either with Gaussian or uniform amplitude distribution)
and a succeeding shaping �lter for adjusting the power spectral density (PSD) of the output �lter (see
Fig. 4.5).

v(n) y(n)

Shaping �lterNoise generator

Figure 4.5: Signal generation.

Since the input PSD is constant (white noise) the shaping �ltermust be designed such that its frequency
response (respectively the squared magnitude of it) is the same as the desired PSD. Fig. 4.6 shows an
example of in input and output PSDs (in blue) together with the desired PSD (in grey).

4.3 References

[1] E. Hänsler, G. Schmidt: Acoustic Echo and Noise Control, Wiley, 2004.

25



Authors of this Chapter

Normalized frequency Ω/π
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

dB

-40

-20

0

20

40
Desired magnitude response
Estimated power speactral dessity of the filter output

dB

-40

-20

0

20

40
Desired power spectral desnity
Estimated power speactral dessity of the filter input

Figure 4.6: Power spectral density before and a�er the shaping �lter.

[2] H. Löllmann, P. Vary: Low Delay Filter for Adaptive Noise Reduction, Proc. IWAENC ’05, Eindhoven,
�e Netherlands, pp. 205 - 208, 2005.

[3] H. Löllmann, P. Vary: A Filter Structure for Low Delay Noise Suppression, Proc. ITG-Fachtagung ’06,
Kiel, Germany, 2006.

4.4 Authors of this Chapter

Gerhard Schmidt Text GUS

26



Chapter 5

Complex Magnitude Approximations

written by Gerhard Schmidt

�is chapter starts with a brief introduction in
telephony with special emphasis on hands-free
systems. Secondly the main outline of this book
is described and the notation used in the remain-
ing chapters is explained.

Contents:

5.1 Problem 27
5.2 A Very Simple Approximation 27
5.3 A Better Approximation 27
5.4 References 27
5.5 Authors 28

5.1 Problem

- Need for magnitude instead of magnitude square values

- Complexity of square root computations

5.2 A Very Simple Approximation

Some text ...

5.3 A Better Approximation

Some text ...

5.4 References

[1] �e New Bell Telephone, Sci. Am. 38(1), 1(1877).

27



Authors of this Chapter

5.5 Authors of this Chapter

Gerhard Schmidt Text GUS

28



Chapter 6

Removal of Signal Trends

written by Christin Bald, Julia Kreisel, and Gerhard Schmidt

�is chapter is about the removal of the o�set
– also referred to as trend – of a signal. �ere-
fore three di�erent methods are introduced and
compared against each other: subtracting a pri-
ori knowledge, highpass �ltering, and a nonlin-
ear, time-variant method. �e presented meth-
ods are numerically robust and computationally
e�cient. �e performances of the methods are
demonstrated by removing the trend of a mag-
netically measured heart signal.

Contents:

6.1 Problem 29
6.2 A Simple Method 30
6.3 Highpass Filtering 30
6.4 Non-linear, Time-variant Approach 33
6.5 Comparison 36
6.6 References 36
6.7 Code Examples 37
6.8 Authors 42

6.1 Problem

Remark:

�e MCG signals depicted on the

next page and used in the following

examples can be downloaded as wav

�les from the RED website.

In several applications signals are recorded that contain an o�set. Sometimes the
o�set carries information – in these cases this signal component should not be re-
moved. However, in a variety of applications one is interested mainly in the temporal
variations of the signal (and not in the o�set). In these cases a simple (meaning com-
putationally e�cient) and robust o�set or so-called trend removal can be applied.
�is allows follow-up signal processing to be a bit simpler, e.g. thresholds do not
have to be adjusted to the o�set.

Examples for such signals are ECG or MCG signals, where ECG abbreviates electrocardiogram and MCG
its magnetic counterpart, magnetocardiogram. Since the authors work with the analysis of both we will use
MCG signals as an example. Fig. 6.1 shows two signals that were recorded at the same time but at di�erent
positions.

MCG signals show the same cardiac cycle as known from ECG signals. One heart cycle consists of a P wave,
a QRS complex, and a T wave [2]. �e �rst wave is the P wave in which the atria contraction is described.
�e QRS complex is the combination of the Q, R and S wave showing the beginning of the contraction of
the ventricle. �e start of the T wave describes the beginning of the relaxation. �e o�set means an almost

29

https://dss.tf.uni-kiel.de/index.php/teaching/red-main/red-trend-removal


Removal of Signal Trends by Highpass Filtering

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-360

-340

-320

-300

-280

-260

-240

-220 MCG signal 1

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-220

-200

-180

-160

-140

-120

-100

-80 MCG signal 2

Figure 6.1: MCG (magnetocardiogram) input signals.

constant shi�ing from zero.

6.2 A Simple Method to Remove a Signal O�set

A very simple method to remove the trend in a signal is to know the trend a priori and to subtract this value.
If the application allows for a so-called pre-measurement, it is rather simple to obtain an estimate for the
mean of the signal (with or without the desired signal component). Assuming that we have this measure, we
can obtain a simple trend estimate by just using the a priori knowledge:

xtrend,simple(n) = xa prioi. (6.1)

�e trend compensated signal can be obtained by subtracting the estimated trend from the measured signal:

xcomp,simple(n) = x(n)− xtrend,simple(n). (6.2)

To obtain a good estimate for xa prioi we have averaged the two input signals that are depicted in Fig. 6.1 for
the entire length of both signals individually. �e resulting values are then used as a priori knowledge and
are subtracted from the input signals according to Eq. (6.2). Fig. 6.2 shows the resulting detrended signals
(in the upper diagrams) as well as the estimated trends (red color) and the input signals (blue color) in the
lower diagrams. Please note that only the �rst 10 seconds of the signals are depicted. �e second signal gets
a much smaller o�set during the period of 10 to 30 seconds (compared to the �rst 10 seconds), leading to the
depicted average that looks a bit too small at �rst glance.

6.3 Removal of Signal Trends by Highpass Filtering

A second method for trend removal is to estimate the mean of the signal by means of averaging the signal
over the lastNhp samples:

xtrend,hp(n) =
1

Nhp

Nhp−1
∑

i=0

x(n− i). (6.3)

30



Removal of Signal Trends by Highpass Filtering

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-360

-340

-320

-300

-280

-260

-240

-220 MCG signal 1

Estimated trend (constant)

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-60

-40

-20

0

20

40

60

80

100

120

Detrended MCG signal 1 (constant)

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-220

-200

-180

-160

-140

-120

-100

-80 MCG signal 2

Estimated trend (constant)

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-60

-40

-20

0

20

40

60

80

100

120

Detrended MCG signal 2 (constant)

Figure 6.2: Input signals, estimated trends, and trend compensated signals using the method of constant
subtraction.

�e estimated mean value xtrend,hp(n) is subtracted from the input signal

xcomp,hp(n) = x(n) − xtrend,hp(n), (6.4)

Remark:

�e approach presented here uses

only causal memory. If �le-based

processing is performed, the �lter

operation of Eq. (6.3) could also start

at i = −Nhp/2 − 1 and end at

i = Nhp/2.

resulting in the desired trend removal. While Eq. (6.3) describes a lowpass �lter, the
subtraction in Eq. (6.4) results in a highpass �lter, which gives this section also its
name. Both �lters are related (in the frequency domain) as:

Hhp

(

e−jΩ
)

= 1−Hlp

(

e−jΩ
)

. (6.5)

�e frequency response of the lowpass �lter can be obtained by �rst having a closer
look on Eq. (6.3) in the time domain. �e equation can be interpreted as a convolu-
tion of the input signal with the lowpass impulse response hlp,n :

xtrend,hp(n) =

∞
∑

i=∞

hlp,i x(n− i). (6.6)

31



Removal of Signal Trends by Highpass Filtering

Comparing Eqs. (6.3) and (6.6) leads to the FIR (�nite impulse response, [1, 3, 4]) system

hlp,i =







1

Nhp
, if 0 ≤ i < Nhp,

0, else.

(6.7)

Taking also the subtraction of Eq. (6.4), which actually detrends the signal, into account leads to the impulse
response of the high pass �lter (again an FIR �lter):

hhp,i =























1−
1

Nhp
, if i = 0,

−
1

Nhp
, if 1 ≤ i < Nhp,

0, else.

(6.8)

In Fig. 6.3 themagnitude responses of resulting lowpass (le� side) and highpass �lter (right side) are depicted.
For a sample rate of fs = 1000Hz a �lter orderNhp = 2000was chosen, leading to an average based on the
last two seconds of the signal.

Frequency in Hz

0 2 4 6 8 10

d
B

-50

-40

-30

-20

-10

0

10 Magnitude response of the lowpass filter

Frequency in Hz

0 0.5 1 1.5 2 2.5 3

d
B

-50

-40

-30

-20

-10

0

10 Magnitude response of the highpass filter

Figure 6.3: Magnitude responses of the lowpass and highpass �lter for a �lter order of Nhp = 2000 and a
sample rate of fs = 1000Hz.

�e computation of the lowpass part of the trend removal is rather costly, since usually a few hundred or
even thousand (as in our example) signals have to be added. Of course, one can speed up the process by
performing the entire operation in the spectral domain using fast Fourier transforms. However, this would
introduce delay due to the necessary framing. Another way that is able to save an even larger amount of
complexity is to exploit the special choice of the �lter coe�cients (they are all the same) and transform the
FIR �lter into an IIR structure. �is can be achieved by recursively computing the estimated trend according
to

xtrend,hp(n) = xtrend,hp(n− 1) +
1

Nhp

[

x(n)− x(n−Nhp)
]

. (6.9)

�is requires only two additions and one multiplication per sample. Please note that the division byNhp can
be computed during initialization and the inverse value can be stored. �is transforms the division into a

32



A Non-linear and Time-variant Approach

multiplication (at least for the main operation of the �lter). In terms of memory nothing has changed with
this trick – still Nhp samples have to be stored in a so-called ringbu�er.

Transforming speci�c FIR �lter structures into equivalent IIR counterparts is not new. However, only a few
authors mention the numerical problems that appear with this kind of processing.

When computing Eq. (6.9) on a processor with �oating point precision, the mantissae of all terms that should
be added are shi�ed until the exponents are all the same. When a sample is entering the memory this shi�ing
operation is not necessarily the same as during the leaving event. As a consequence biased error accumulation
appears. If the signal is rather short this is not really an issue. However, if a few thousand samples have to be
processed this might lead to numerical problems.

A solution to this problem is rather simple. �e recursive processing should be updated from time to time
by an iteratively computed estimation. �is could be achieved with a small extension to Eq. (6.9):

xtrend,hp(n) =











xtrend,reset(n)

Nhp
, if mod (n,Nhp) ≡ Nhp − 1,

xtrend,hp(n− 1) + 1
Nhp

[

x(n) − x(n−Nhp)
]

, else.

(6.10)

�e so-called reset value can be computed according to

xtrend,reset(n) =

{

x(n), if mod (n,Nhp) ≡ 0,

xtrend,reset(n− 1) + x(n), else.
(6.11)

To show the results of this second method, the simulation of Fig. 6.2 has been repeated, but now with the
highpass method. Fig. 6.4 shows in the upper diagrams the detrended results as well as the input signals (blue
color) and the estimated trends (red color) in the lower diagrams.

6.4 A Non-linear and Time-variant Approach

As a last method we would like to introduce a non-linear, time-variant method. �e method is nearly as
simple as the highpass �lter, but is usually a bit better, especially if the short-term mean of the signal is not
zero. In addition a signi�cant reduction of the required memory (compared to the highpass �lter approach)
is possible.

As a �rst step we de�ne the global memory of the signal asNglobal samples. In the following we will base our
analyses on input signals up to that delay. Please note that it is not required to store the input signal for that
amount of samples. As a second step we split the global memory into frames and de�ne the framesizeNframe

for our method. For the MCG example we could use about 1 second of global memory and a frame duration
of about 100ms. Since the data was sampled at fs = 1 kHz, we get

Nglobal = 1000, (6.12)

Nframe = 100. (6.13)

Furthermore, we assume that Nglobal is an integer multiple ofNframe

Nglobal = Kframe Nframe, (6.14)

33



A Non-linear and Time-variant Approach

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-360

-340

-320

-300

-280

-260

-240

-220 MCG signal 1

Estimated trend (highpass)

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-60

-40

-20

0

20

40

60

80

100

120

Detrended MCG signal 1 (highpass)

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-220

-200

-180

-160

-140

-120

-100

-80 MCG signal 2

Estimated trend (highpass)

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-60

-40

-20

0

20

40

60

80

100

120

Detrended MCG signal 2 (highpass)

Figure 6.4: Input signals, estimated trends, and trend compensated signals using highpass �ltering.

which is true in the example above (Kframe = 10). As a next step we compute in an iterative manner the
mean for each frame according to

xcurr. mean(n) =







x(n)
Nframe

, if mod
(

n,Nframe

)

≡ 0,

xcurr. mean(n− 1) + x(n)
Nframe

, else.
(6.15)

Please note that xcurr. mean(n) only results in the correct mean if the condition

n = λNframe − 1, (6.16)

is true (with λ ∈ Z). To save computational complexity the division by Nframe can also be avoided for the
sample-by-sample iteration – it should be performed only when the frame is completely �lled. Beside the
simple update according to Eq. (6.15) only one �rst-order recursive smoothing process and the subtraction
of the estimated trend according to

xcomp,nl(n) = x(n)− xtrend,nl(n) (6.17)

are computed at the high sample rate. All other computations are computed only once per Nframe samples.

34



A Non-linear and Time-variant Approach

It will lead to a trend estimate x̃trend,nl(n) that is available only if

mod
(

n,Nframe

)

≡ Nframe − 1, (6.18)

which is an equivalent condition to Eq. (6.16). If we would use the (subsamples) estimated trend directly
in Eq. (6.17), sudden signal jumps might appear. For that reason, �rst order IIR smoothing is performed to
avoid such artifacts:

xtrend,nl(n) = βsm xtrend,nl(n− 1) + (1 − βsm) x̃trend,nl

(⌊ n

Nframe

⌋)

. (6.19)

�e symbols ⌊...⌋ should indicate rounding down. �e smoothing parameter βsm is chosen from the interval

0 ≪ βsm < 1. (6.20)

Typically βsm is chosen out of the range [0.9, 0.9999] – depending on the sample rate fs and on the frame
size Nframe. If a frame is completely �lled (according to condition (6.18) the short-term mean is added to a
vector that contains the lastKframe short-term means

xmean(n) =































[

xcurr. mean

(

n
)

, xcurr. mean

(

n−Nframe

)

, ..., xcurr. mean

(

n− (Kframe − 1)Nframe

)

]T

,

if mod(n,Nframe) ≡ Nframe − 1,

xmean(n− 1),

else.

(6.21)

�is method allows to store the supporting points of the averaged signal in a subsampled manner, meaning
that only Kframe data words (in our example 10) are required to store information ofNglobal samples (in our
example 1000). �e basic idea to estimate the trend is now to sort the entries of the vector xmean(n) and
to utilize, e.g., the median of the stored short-term means. Beside the median also other quantiles could
be utilized. However, the median usually should be the �rst choice. �e vector containing the sorted mean
values is denoted by

xmean, sorted(n) =
[

xmean, sorted, 0(n), xmean, sorted, 1(n), ..., xmean, sorted, Kframe − 1(n)
]T

. (6.22)

�e reason for using a sorting operation here (and not a second averaging stage) is that this allows also for
a good trend estimation even if the signal might have a positive or negative bias (as it is the case in the �rst
MCG example signal). Of course the literature is full of e�cient sorting algorithms. However, since we can
assume that we already have a sorted list available before a new short-term mean is computed we can use a
two-stage procedure that updates the sorted list:

• As a �rst stage we copy the old sorted vector and the new short-term mean into an extended sorted
vector. �is operation can be performed withKframe + 1 operations.

• In a second stage we copy the extended vector back into the original. Beside this copying operation
we check if the element to be copied is equal to the short-term mean that leaves the vector xmean(n).
�is element is then not copied resulting in a shortening of the extended vector. For this second part
againKframe + 1 operations are required.

35



5

3

9

11

13

5

13

3

11

9

10

10

11

13

5

3

9

10

11

13

5

3

9 9

3

10

11

13

Figure 6.5: Sorting of the frame means.

As a consequence the entire sorting procedure (which is actually only an update of an already sorted list)
required only about 2Kframe operations. Fig. 6.5 shows an overview about the two-stage sorting procedure.

EveryNframe sample the (non-smoothed) trend estimate is updated according to

x̃trend,nl(n) =

{

xmean, sorted, Kframe/2
(n), if mod(n,Nframe) ≡ Nframe − 1,

x̃trend,nl(n− 1), else.
(6.23)

As in the last sections we perform the detrending operation with the two MCG input signals and show the
estimated trends together with the input signals as well as the detrended signals in Fig. 6.6.

6.5 Comparison of the�ree Methods

In comparison to the other two methods, the �rst one is the simplest one. As one can see in Fig. 6.7 the
method removes the trend (at least partly), but the resulting signal is not really on the desired zero line.
However, the required computing time is really low since only a �xed constant is subtracted. Also nearly
no memory (one data word for the mean) is required. �e method using the highpass approach gives a
quite good result but needs the largest memory. In addition, the highpass method requires a little bit more
computing time, but still only a few operations are required per sample if computed in recursive manner.
�e non-linear method �ts nearly exactly to the zero line. Furthermore, much less memory is required
(compared to the highpass method). As conclusion one can say that the non-linear method is the best for
removing o�sets – at least for the examples that we tested here.

6.6 References

[1] S. K. Mitra: Digital Signal Processing – A Computer Based Approach, 2nd edition, Mc Graw-Hill, 2001.

[2] C. M. Porth: Essentials of Pathophysiology – Concepts of Altered Health States, 3rd edition, Wolters
Kluwer, 2011.

[3] J. G. Proakis, D. G. Manolakis: Digital Signal Processing – Principles, Algorithms, and Applications, 3rd
edition, Prentice Hall, 1996.

[4] F. J. Taylor: Digital Filter Design Handbook, Marcel Dekker, 1983.

36



Code Examples

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-360

-340

-320

-300

-280

-260

-240

-220 MCG signal 1

Estimated trend (non-linear)

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-60

-40

-20

0

20

40

60

80

100

120

Detrended MCG signal 1 (non-linear)

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-220

-200

-180

-160

-140

-120

-100

-80 MCG signal 2

Estimated trend (non-linear)

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-60

-40

-20

0

20

40

60

80

100

120

Detrended MCG signal 2 (non-linear)

Figure 6.6: Input signals, estimated trends, and trend compensated signals using the non-linear and time-
variant approach.

6.7 Code Examples

Remark:

�e following code example can be

downloaded via the RED website.

%**************************************************************************
% Clear and close everything

%**************************************************************************
clc;

clear all;

close all;

%**************************************************************************
% Load input data

%**************************************************************************
[sig, f_s] = audioread('mcg_01.wav');

%**************************************************************************
% Detrending − Method 1: Subtraction of constant (mean)

%**************************************************************************
sig_detr_const = sig − mean(sig);

%**************************************************************************
% Detrending − Method 2: Highpass

37

https://dss.tf.uni-kiel.de/index.php/teaching/red-main/red-trend-removal


Code Examples

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-20

-10

0

10

20

30

40

50

60

Detrended MCG signal 1 (constant)

Detrended MCG signal 1 (highpass)

Detrended MCG signal 1 (non-linear)

Desired zero line

Time in seconds

0 2 4 6 8 10

A
m

p
lit

u
d

e
 i
n

 p
T

-20

-10

0

10

20

30

40

50

60

Detrended MCG signal 2 (constant)

Detrended MCG signal 2 (highpass)

Detrended MCG signal 2 (non-linear)

Desired zero line

Figure 6.7: Comparison of the three methods.

%**************************************************************************

% Parameters **************************************************************
N_hp = 2*f_s;

% Initializations *********************************************************
mean_start = mean(sig);

sig_detr_hp = zeros(size(sig));

est_mean_sig_hp = zeros(size(sig));

sig_mem = zeros(N_hp,1) + mean_start;

ptr_sig = 0;

mean_rec = mean_start;

mean_iter = 0;

k_iter = 0;

N_hp_inv = 1 / N_hp;

%**************************************************************************
% Main loop

%**************************************************************************
for k = 1:length(sig)

%**********************************************************************
% Get new input signal

%**********************************************************************
sig_entering = sig(k);

%**********************************************************************
% Update ring buffer

%**********************************************************************
% Update of the pointer (modulo N_hp) *********************************
ptr_sig = ptr_sig + 1;

if (ptr_sig > N_hp)

ptr_sig = 1;

end;

% Store leaving signal in variable ************************************
sig_leaving = sig_mem(ptr_sig);

% Add new input to signal memory **************************************
sig_mem(ptr_sig) = sig_entering;

38



Code Examples

%**********************************************************************
% Update mean recursively

%**********************************************************************
mean_rec = mean_rec + (sig_entering − sig_leaving) * N_hp_inv;

%**********************************************************************
% Iteratively computed mean and correction of rec. mean

%**********************************************************************
k_iter = k_iter + 1;

mean_iter = mean_iter + sig_entering;

if (k_iter == N_hp)

mean_rec = mean_iter * N_hp_inv;

mean_iter = 0;

k_iter = 0;

end

%**********************************************************************
% Store estimated mean (for analysis purposes)

%**********************************************************************
est_mean_sig_hp(k) = mean_rec;

%**********************************************************************
% Output = input − mean

%**********************************************************************
sig_detr_hp(k) = sig_entering − mean_rec;

end;

%**************************************************************************
% Detrending − Method 3: New method (no name found yet)

%**************************************************************************

% Parameters **************************************************************
Cell_dur = round(0.1 * f_s); % Cell duration

N_mem_des = round(1.0 * f_s); % Total memory duration

N_cells = round(N_mem_des/Cell_dur); % Number of cells

mean_start = mean(sig);

beta_sm = 0.98;

% Initializations *********************************************************
detr_counter = 0;

Cell_dur_inv = 1 / Cell_dur;

mean_curr_cell = 0;

vec_cell_means = zeros(N_cells,1) + mean_start;

vec_cell_means_sorted = zeros(N_cells,1) + mean_start;

vec_cell_means_sorted_ext = zeros(N_cells+1,1) + mean_start;

pointer_vec_cell_means = 0;

global_mean_est = mean_start;

sig_detr_new = zeros(size(sig));

est_mean_sig_new = zeros(size(sig));

global_mean_est_sm = mean_start;

%**************************************************************************
% Main loop

%**************************************************************************
for k = 1:length(sig)

%**********************************************************************
% Get new input signal

%**********************************************************************
sig_entering = sig(k);

39



Code Examples

%**********************************************************************
% Increment main counter

%**********************************************************************
detr_counter = detr_counter + 1;

if (detr_counter > Cell_dur)

% Reset counter ***************************************************
detr_counter = 0;

% Finalize estimation of mean of current cell *********************
mean_curr_cell = mean_curr_cell * Cell_dur_inv;

% Update vector containing cell means *****************************
pointer_vec_cell_means = pointer_vec_cell_means + 1;

if (pointer_vec_cell_means > N_cells)

pointer_vec_cell_means = 1;

end;

vec_cell_means_leaving = vec_cell_means(pointer_vec_cell_means);

vec_cell_means(pointer_vec_cell_means) = mean_curr_cell;

% Insert new mean into sorted list ********************************
index_offset = 0;

for k_sort = 1:N_cells

if ( (mean_curr_cell > vec_cell_means_sorted(k_sort)) && ...

(index_offset == 0) )

index_offset = 1;

vec_cell_means_sorted_ext(k_sort) = mean_curr_cell;

end

vec_cell_means_sorted_ext(k_sort+index_offset) = vec_cell_means_sorted(k_sort);

end;

if (index_offset == 0)

vec_cell_means_sorted_ext(N_cells+1) = mean_curr_cell;

end;

% Remove leaving mean from sorted list ****************************
index_offset = 0;

for k_sort = 1:N_cells

if ( (vec_cell_means_leaving == vec_cell_means_sorted_ext(k_sort)) && ...

(index_offset == 0) )

index_offset = 1;

end

vec_cell_means_sorted(k_sort) = vec_cell_means_sorted_ext(k_sort+index_offset);

end;

% Update mean by taking from the middle of the sorted list ********
global_mean_est = vec_cell_means_sorted(round(N_cells/2));

% Reset current mean estimation ***********************************
mean_curr_cell = 0;

40



Code Examples

else

% Update estimation of mean of current cell ***********************
mean_curr_cell = mean_curr_cell + sig_entering;

end;

%**********************************************************************
% Smoothing of the estimated mean

%**********************************************************************
global_mean_est_sm = beta_sm * global_mean_est_sm + ...

(1 − beta_sm) * global_mean_est;

est_mean_sig_new(k) = global_mean_est_sm;

%**********************************************************************
% Detrend input signal

%**********************************************************************
sig_detr_new(k) = sig_entering − global_mean_est;

end

%**************************************************************************
% Analyses

%**************************************************************************
t_h = (0*f_s+1:30*f_s−1);

t = (t_h−1)/f_s;

lw = 1.5;

% Time−domain analyses ***************************************************
fig = figure;

set(fig,'Units','Normalized');

set(fig,'Position',[0.1 0.1 0.8 0.8]);

sb_td_detr(1) = subplot('Position',[0.08 0.68 0.84 0.28]);

plot(t,sig_detr_const(t_h),'b','LineWidth',lw);

grid on;

set(gca,'XTickLabel','');

legend('Detrended signal (const subtraction)');

sb_td_detr(2) = subplot('Position',[0.08 0.38 0.84 0.28]);

plot(t,sig_detr_hp(t_h),'b','LineWidth',lw);

grid on;

set(gca,'XTickLabel','');

legend('Detrended signal (highpass)');

sb_td_detr(3) = subplot('Position',[0.08 0.08 0.84 0.28]);

plot(t,sig_detr_new(t_h),'b','LineWidth',lw);

grid on;

xlabel('Time in seconds');

legend('Detrended signal (new method)');

linkaxes(sb_td_detr,'xy');

% Time−domain analyses ***************************************************
fig = figure;

set(fig,'Units','Normalized');

set(fig,'Position',[0.1 0.1 0.8 0.8]);

sb_td_detr(1) = subplot('Position',[0.08 0.68 0.84 0.28]);

plot(t,sig(t_h),'b', ...

t,sig(t_h)*0+mean(sig),'r','LineWidth',lw);

grid on;

set(gca,'XTickLabel','');

41



Authors of this Chapter

legend('Input signal','Estimated mean (const subtraction)');

sb_td_detr(2) = subplot('Position',[0.08 0.38 0.84 0.28]);

plot(t,sig(t_h),'b', ...

t,est_mean_sig_hp(t_h),'r','LineWidth',lw);

grid on;

set(gca,'XTickLabel','');

legend('Input signal ','Estimated mean (highpass)');

sb_td_detr(3) = subplot('Position',[0.08 0.08 0.84 0.28]);

plot(t,sig(t_h),'b', ...

t,est_mean_sig_new(t_h),'r','LineWidth',lw);

grid on;

xlabel('Time in seconds');

legend('Input signal ','Estimated mean (new method)');

linkaxes(sb_td_detr,'xy');

6.8 Authors of this Chapter

Christin Bald received the B.Sc. and M.Sc. degrees from Kiel University, Germany, in
2016 and 2017, respectively. Since her M.Sc. graduation she works as a research assistant
in the Digital Signal Processing and System�eory group at Kiel University. Her research
focus is on multichannel measurements and analysis of magnetoelectric sensor systems.

Julia Kreisel works towards her B.Sc. degree at Kiel University, Germany. During her
Bachelor thesis, her aim is to measure the magnetic �eld of the heart for contact-free bed-
side diagnostic. For the magnetic measurements an array of optically pumped magne-
tometers is implemented into a mattress.

Gerhard Schmidt received the Dipl.-Ing. and Dr.-Ing. degrees from the Darmstadt Uni-
versity of Technology, Darmstadt, Germany, in 1996 and 2001, respectively. A�er the Dr.-
Ing. degree, he worked in the research groups of the Acoustic Signal Processing Depart-
ment, Harman/Becker Automotive Systems and at SVOX, Ulm, Germany. Parallel to his
time at SVOX, he was a part-time Professor with the Darmstadt University of Technol-
ogy. Since 2010, he has been a Full Professor with Kiel University, Germany. His main
research interests include adaptive methods for speech, audio, underwater, and medical
signal processing.

42


	I Basics
	Fast Convolution
	Problem
	References
	Code Examples
	Authors of this Chapter

	Recursive Norm Computation
	Problem
	Recursive Computation
	Mixed Recursive/Iterative Computation
	References
	Code Examples
	Authors of this Chapter

	Levinson-Durbin Recursion
	Problem
	References
	Code Examples
	Authors of this Chapter

	Prediction-based Filter Design
	Basics
	Application Examples
	References
	Authors of this Chapter

	Complex Magnitude Approximations
	Problem
	A Very Simple Approximation
	A Better Approximation
	References
	Authors of this Chapter

	Removal of Signal Trends
	Problem
	A Simple Method to Remove a Signal Offset
	Removal of Signal Trends by Highpass Filtering
	A Non-linear and Time-variant Approach
	Comparison of the Three Methods
	References
	Code Examples
	Authors of this Chapter



