Lecture "Signals and Systems I"
Basic Information | |
---|---|
Lecturers: | Gerhard Schmidt (lecture), Konstantinos Karatziotis and Johannes Hoffmann (exercise) |
Room: | ES21/Building D - EG.005 (HS I) |
E-mail: | |
Language: | German |
Target group: | Students in electrical engineering and computer engineering |
Prerequisites: | Mathematics for engineers I, II & III; Foundations in electrical engineering I & II |
Contents: |
This course teaches basics in systems theory for electrical engineering and information technology. This basic course is restricted to continuous and deterministic signals and systems. Topic overview:
|
References: | H.W. Schüßler: Netzwerke, Signale und Systeme II: Theorie kontinuierlicher und diskreter Signale und Systeme, Springer, 1991 H.D. Lüke: Signalübertragung, Springer, 1995 |
News
The review of the exam will take place on the 18th of April from 8:30 to 9:30 am in building C in room 01.028.
Scroll down to find a list of the topics with a detailed schedule for the exercises in SS24.
Lecture Slides
Lecture Script
A script for the lecture is available here. It is currently under construction, but a first version is already available via the link mentioned before. If you find some error, please let me (Gerhard Schmidt) know.
Lecture Videos
Video | Content |
---|---|
Introduction - part 1 of 3 |
|
Introduction - part 2 of 3 |
|
Introduction - part 3 of 3 |
|
Signals - part 1 of 3 |
|
Signals - part 2 of 3 |
|
Signals - part 3 of 3 |
|
Spectra, Fouier series and DFT - part 1 of 3 |
|
Spectra, Fouier series and DFT - part 2 of 3 |
|
Spectra, Fouier series and DFT - part 3 of 3 |
|
Spectra, Fouier transformations - part 1 of 3 |
|
Spectra, Fouier transformations - part 2 of 3 |
|
Spectra, Fouier transformations - part 3 of 3 |
|
Spectra, z and Laplace transform - part 1 of 3 |
|
Spectra, z and Laplace transform - part 2 of 3 |
|
Spectra, z and Laplace transform - part 3 of 3 |
|
Linear systems - part 1 of 4 |
|
Linear systems - part 2 of 4 |
|
Linear systems - part 3 of 4 |
|
Linear systems - part 4 of 4 |
|
Modulation - part 1 of 1 |
Exercises
Date | Event |
---|---|
No exercise | |
25.04.2024 | Theory: Matlab/Python introduction and system properties |
02.05.2024 | Question time: Prepare exercises 1 and 2! |
No exercise (public holiday) | |
16.05.2024 | Theory: Periodicity and Fourier series |
23.05.2024 | Question time: Prepare exercises 5, 6, 7, and 9! |
No exercise (general meeting) | |
06.06.2024 | Theory: DFT and Fourier transform |
13.06.2024 | Question time: Prepare exercises 11, 12, 14, 15, and 16! |
20.06.2024 | Theory: Convolution and Laplace transform |
27.06.2024 | Question time: Prepare exercises 18, 19, 21, 23, and 25! |
04.07.2024 Room F-SR-III |
Theory: Z transform and Notch Filter example |
11.07.2024 | Question time: Prepare exercises 27, 28, 30, and 31! |
25.09.2024 - 8:15 h Room D-HS-I |
Exam preparation |
Exercises and Solutions
Link | Content |
---|---|
All exercises. | |
Solutions to all exercises. |
Exercise Videos
Video | Content | |
---|---|---|
Exercise 1 |
||
Exercise 2 |
||
Exercise 3 |
Optional exercise |
|
Exercise 4 |
Optional exercise |
|
Exercise 5 |
||
Exercise 6 |
||
Exercise 7 |
||
Exercise 8 |
Optional exercise |
|
Exercise 9 |
||
Exercise 10 |
Optional exercise |
|
Exercise 11 |
||
Exercise 12 |
||
Exercise 13 |
Optional exercise |
|
Exercise 14 |
||
Exercise 15 |
||
Exercise 16 |
||
Exercise 17 |
Optional exercise |
|
Exercise 18 |
||
Exercise 19 |
||
Exercise 20 |
Optional exercise |
|
Exercise 21 |
||
Exercise 22 |
Optional exercise |
|
Exercise 23 |
||
Exercise 24 |
Optional exercise |
|
Exercise 25 |
||
Exercise 26 |
Optional exercise |
|
Exercise 27 |
||
Exercise 28 |
||
Exercise 29 |
Optional exercise |
|
Exercise 30 |
||
Exercise 31 |
||
Exam preparation (exam of winter term 2017/2018) |
|
|
Exam preparation (exam of winter term 2020/2021) |
|
Matlab Theory Examples
How to use Matlab as a student:
- Campus-wide license (recommended)
- Windows Remote Server
Matlab introduction (click to expand)
close all % Close all plots
clear % Clear workspace
clc % Clear console
% Latex font
set(groot, 'DefaultTextInterpreter', 'LaTeX');
set(groot, 'DefaultAxesTickLabelInterpreter', 'LaTeX');
set(groot, 'DefaultAxesFontName', 'LaTeX');
set(groot, 'DefaultAxesFontSize', 14);
set(groot, 'DefaultLegendInterpreter', 'LaTeX');
cmap = lines;
% Get info from matlab docu e.g for command 'close' -------------
% help close % Short overview
% doc close % Detailed documentation
% Matrix and element wise arithmetic operation -----------------------
% Use ; to suppress output of statement
% a = [1, 2, 3, 4]; % Row vector
% a = [1 2 3 4]; % Same row vector
% b = [2; 3; 4; 5]; % Column vector
% a = a'; % Transpose vector
% c = b * a; % Matrix multiplication
% c = a.* a; % Element wise multiplication
%**************************************************************************
% Basic parameters
%**************************************************************************
f_s = 100; % Sample rate in Hz
T = 10; % Signal duration in s
f_0 = 0.5; % Test signal frequency in Hz
L = f_s * T; % Signal length in samples
%**************************************************************************
% Generate signals
%**************************************************************************
% Generate equidistant time scale from 0 to 10 s
t = (0 : L - 1) / f_s;
% Generate sine test signal with frequency f_0
v = sin(2*pi*f_0*t);
%**************************************************************************
% Create plots
%**************************************************************************
%%
% Minimal plot of test signal ----------------------------------------------
figure % Open new figure
plot(t, v) % Actual plotting operation
%%
% Plot with some beautification--------------------------------------------
figure
plot(t, v, 'LineWidth', 2, 'Color', 'red')
title('Test signal with some beautification')
xlabel('Time (s)') % X axis label
ylabel('Magnitude (a.u.)') % Y axis label
legend('Test signal') % Add legend
grid on % Add legend
xlim([0 1/f_0]) % Limit x-axis to one period
%%
% Discrete stem plot ------------------------------------------------------
figure
stem(t, v)
title('Test signal with stem plot')
xlabel('Time (s)') % X axis label
ylabel('Magnitude (a.u.)') % Y axis label
legend('Test signal') % Add legend
grid on % Add legend
xlim([0 0.5]) % Limit x-axis
%%
% Multiple plots with hold on ----------------------------------------------
figure
plot(t, v)
title('Multiple plots with hold on')
hold on % Keep previous plot
plot(t, -v)
xlabel('Time (s)')
ylabel('Magnitude (a.u.)')
legend('Test signal', 'Inv. test signal')
grid on
xlim([0 1/f_0])
%%
% Multiple plots with subplot ----------------------------------------------
% 2 vertical,1 horizontal plot
figure
subplot(2, 1, 1) % First subplot
plot(t, v)
title('Multiple plots with subplot')
ylabel('Magnitude (a.u.)')
legend('Test signal')
grid on
xlim([0 1/f_0])
subplot(2, 1, 2) % Second subplot
plot(t, -v)
xlabel('Time (s)')
ylabel('Magnitude (a.u.)')
legend('Inv. test signal')
grid on
xlim([0 1/f_0])
%**************************************************************************
% 3D Plots (will be discussed next week)
%**************************************************************************
%%
% Plot v, v_2 and v_3 as 3D trajectory ----------------------------------
% Generate sine signal as first component
v_x = sin(2*pi*f_0*t).*t;
% Generate cosine signal as second component
v_y = cos(2*pi*f_0*t).*t;
% Generate linear function as third component
v_z = t;
figure
plot3(v_x, v_y, v_z) % 3D plot
title('3D plot as trajectory')
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')
axis image % Proportional axis
grid on
%%
% Plot noise as surface plot ----------------------------------------------
% Generate gaussian noise as 2D matrix
L_2 = 50; % Use less samples
v_2d = randn(L_2, L_2); % Generate noise
x = 1 : L_2; % X axis
y = 1 : L_2; % Y axis
% Surface plot
figure
subplot(2, 1, 1)
surf(x, y, v_2d, 'EdgeColor', 'none', 'FaceColor', 'interp')
title('Surface plot 3D')
c = colorbar; % Use colorbar
ylabel(c, 'Magnitude (a.u.)', 'Interpreter', 'latex')
colormap jet
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')
subplot(2, 1, 2)
surf(x, y, v_2d, 'EdgeColor', 'none', 'FaceColor', 'interp')
title('Surface plot topview')
c = colorbar;
ylabel(c, 'Magnitude (a.u.)', 'Interpreter', 'latex')
xlabel('X (m)')
ylabel('Y (m)')
zlabel('Z (m)')
view(0, 90) % Rotate view to XY
axis tight
System properties demo (click to expand)
close all hidden
clear
clc
set(groot, 'DefaultTextInterpreter', 'LaTeX');
set(groot, 'DefaultAxesTickLabelInterpreter', 'LaTeX');
set(groot, 'DefaultAxesFontName', 'LaTeX');
set(groot, 'DefaultAxesFontSize', 14);
set(groot, 'DefaultLegendInterpreter', 'LaTeX');
cmap = lines;
%**************************************************************************
% Basic parameters
%**************************************************************************
N = 10; % Number of samples
%**************************************************************************
% Calculate support variables and signals
%**************************************************************************
n = (0 : N - 1)'; % Time index
% v -----------------------------------------------------------
v = zeros(N, 1); % Input signal
v(3) = 2;
v(5) = 0.5;
v(8) = 3;
% y1 -----------------------------------------------------------
y_1 = v;
% y2 -----------------------------------------------------------
% y3 = 2*v(n) + v(n - 1)
y_2 = 2*v;
y_2(2 : end) = y_2(2 : end) + v(1 : end - 1);
% y3 -----------------------------------------------------------
y_3 = 0.5*v + 0.1*n;
% y4 -----------------------------------------------------------
y_4 = zeros(N, 1);
y_4(1 : end - 1) = v(2 : end);
% y5 -----------------------------------------------------------
y_5 = v.^2;
% y6 -----------------------------------------------------------
y_6 = 2*v + 1;
%%
%**************************************************************************
% Plots
%**************************************************************************
% Evaluate section by section to get plots after each other
% Input signal -----------------------------------------------------
figure
% set(gcf, 'Position', [2000 0 1400 1400]) % Set window size
subplot(4, 1, 1)
stem(n, v, 'LineWidth', 2)
grid on
xlabel('\(n\)', 'FontSize', 20);
ylabel('\(v(n)\)', 'FontSize', 20);
grid on
title('Input signal \(v(n)\)', 'FontSize', 20)
%%
% Complex output signal of system 1 ---------------------------------------
subplot(4, 1, 2)
stem(n, y_1, 'LineWidth', 2, 'Color', cmap(2, :))
hold on
stem(n, zeros(N, 1), 'LineWidth', 2, 'Color', cmap(3, :))
legend({'\(\Re\big\{y_1(n)\big\}\)', '\(\Im\big\{y_1(n)\big\}\)'}, 'FontSize', 20)
grid on
xlabel('\(n\)', 'FontSize', 20);
ylabel('\(y_1(n)\)', 'FontSize', 20);
title('1st system: Output signal \(y_1(n)\)', 'FontSize', 20)
%%
% Output signal of system 2 -----------------------------------------------
subplot(4, 1, 3)
stem(n, y_2, 'LineWidth', 2, 'Color', cmap(4, :))
grid on
xlabel('\(n\)', 'FontSize', 20);
ylabel('\(y_2(n)\)', 'FontSize', 20);
title('2nd: Output signal \(y_2(n)\)', 'FontSize', 20)
%%
% Output signal of system 3 -----------------------------------------------
subplot(4, 1, 4)
stem(n, y_3, 'LineWidth', 2, 'Color', cmap(5, :))
grid on
xlabel('\(n\)', 'FontSize', 20);
ylabel('\(y_3(n)\)', 'FontSize', 20);
title('3rd system: Output signal \(y_3(n)\)', 'FontSize', 20)
%%
figure
% Input signal -----------------------------------------------------
subplot(4, 1, 1)
stem(n, v, 'LineWidth', 2)
grid on
xlabel('\(n\)', 'FontSize', 20);
ylabel('\(v(n)\)', 'FontSize', 20);
grid on
title('Input signal \(v(n)\)', 'FontSize', 20)
%%
% Output signal of system 4 -----------------------------------------------
subplot(4, 1, 2)
stem(n, zeros(N, 1), 'LineWidth', 2, 'Color', cmap(2, :))
hold on
stem(n, y_4, 'LineWidth', 2, 'Color', cmap(3, :))
grid on
xlabel('\(n\)', 'FontSize', 20);
ylabel('\(y_4(n)\)', 'FontSize', 20);
legend({'\(\Re\big\{y_1(n)\big\}\)', '\(\Im\big\{y_1(n)\big\}\)'}, 'FontSize', 20)
title('4th system: Output signal \(y_4(n)\)', 'FontSize', 20)
%%
% Output signal of system 5 -----------------------------------------------
subplot(4, 1, 3)
stem(n, y_5, 'LineWidth', 2, 'Color', cmap(4, :))
grid on
xlabel('\(n\)', 'FontSize', 20);
ylabel('\(y_5(n)\)', 'FontSize', 20);
title('5th system: Output signal \(y_5(n)\)', 'FontSize', 20)
%%
% Output signal of system 6 -----------------------------------------------
subplot(4, 1, 4)
stem(n, y_6, 'LineWidth', 2, 'Color', cmap(5, :))
grid on
xlabel('\(n\)', 'FontSize', 20);
ylabel('\(y_6(n)\)', 'FontSize', 20);
title('6th system: Output signal \(y_6(n)\)', 'FontSize', 20)
Periodicity demo (click to expand)
close all hidden
clear
clc
set(groot, 'DefaultTextInterpreter', 'LaTeX');
set(groot, 'DefaultAxesTickLabelInterpreter', 'LaTeX');
set(groot, 'DefaultAxesFontName', 'LaTeX');
set(groot, 'DefaultAxesFontSize', 14);
set(groot, 'DefaultLegendInterpreter', 'LaTeX');
cmap = lines;
%**************************************************************************
% Basic paramters
%**************************************************************************
f_s_h = 100; % Sampling freq for "continuous" signal in Hz
T_0 = 4; % Fundamental period for normalization in s
f_1 = 1; % Fundamental freq for sin signal in Hz
T_max = 8; % Signal duration in seconds
%**************************************************************************
% Calculate support variables
%**************************************************************************
% Continuous signal --------------------------------------
N_h = T_max * f_s_h + 1; % Duration in samples
t_h = linspace(0, T_max / T_0, T_max * f_s_h + 1); % Time scale in seconds
%**************************************************************************
% Signal selection (uncomment a single signal to use)
%**************************************************************************
% Single cos signal ---------------------------------------
v = cos(2*pi*f_1*t_h);
% Multi cos signal -----------------------------------------
% v = cos(2*pi*f_1*t_h) + cos(2*pi*2*f_1*t_h);
% Rect signal -----------------------------------------------
% v = ones(N_h, 1);
% v(ceil(N_h/2) : end) = v(ceil(N_h/2) : end) * -1;
%**************************************************************************
% Plots
%**************************************************************************
% Evaluate section by section to get plots after each other
figure
% set(gcf, 'Position', [2000 0 1400 1350]) % Set window size
subplot(2, 1, 1)
plot(t_h, v, 'LineWidth', 1)
hold on
grid on
xlabel('\(\frac{t}{T_0}\)', 'FontSize', 30);
ylabel('\(v(t)\)', 'FontSize', 20);
title('Continuous signal \(v(t)\)', 'FontSize', 20)
%%
% Periodicity check ---------------------------------------
T_p = 1 * T_0;
plot([0 T_p / T_0], [0.01 0.01], 'LineWidth', 3, 'Color', cmap(3, :))
legend('Cont. signal', 'Periodicity')
%%
% Highest frequency check -----------------------------
T_n = 1 * T_0;
plot([0 T_n / T_0], [-0.01 -0.01], 'LineWidth', 3, 'Color', cmap(4, :))
legend('Cont. signal', 'Periodicity', 'Highest freq. component')
%%
% Sampling -------------------------------------------------
T_s = 0.125 * T_0;
t_s = downsample(t_h, f_s_h * T_s);
u = downsample(v, f_s_h * T_s);
N_1 = length(t_s);
n_1 = 0 : N_1 - 1;
stem(t_s, u, 'LineWidth', 2, 'Color', cmap(2, :), 'LineWidth', 2)
legend('Cont. signal', 'Periodicity', 'Highest freq. component', 'Sampling points')
%%
% Reconstruction using SI interpolation ------------
y_1 = zeros(N_h, 1);
r = T_0 / T_s;
t_n = t_h * r;
for i = 0 : N_1 - 1
y_1 = y_1 + sinc((t_n - i))' * u(i + 1);
end
subplot(2, 1, 2)
stem(n_1, u, 'LineWidth', 2, 'Color', cmap(2, :))
hold on
plot(t_n, y_1)
grid on
xlabel('\(n\)', 'FontSize', 20);
ylabel('\(u(n)\)', 'FontSize', 20);
title('Discrete signal \(u(n)\)', 'FontSize', 20)
legend('Discrete signal', 'Reconstruction')
Fourier series demo (click to expand)
close all hidden
clear
clc
set(groot, 'DefaultTextInterpreter', 'LaTeX');
set(groot, 'DefaultAxesTickLabelInterpreter', 'LaTeX');
set(groot, 'DefaultAxesFontName', 'LaTeX');
set(groot, 'DefaultAxesFontSize', 14);
set(groot, 'DefaultLegendInterpreter', 'LaTeX');
cmap = lines;
%**************************************************************************
% Basic paramters
%**************************************************************************
f_s_h = 200; % Sampling freq for "continuous" signal in Hz
T_0 = 4; % Fundamental period for normalization in s
T_max = 4; % Signal duration in seconds
%**************************************************************************
% Calculate support variables
%**************************************************************************
% Continuous signal --------------------------------------
N_h = T_max * f_s_h + 1; % Duration in samples
t_h = linspace(0, T_max / T_0, T_max * f_s_h + 1); % Time scale in seconds
%**************************************************************************
% Signal generation
%**************************************************************************
% Rect signal -----------------------------------------------
v = ones(N_h, 1);
v(ceil(N_h/2) : end) = v(ceil(N_h/2) : end) * -1;
% Fourier series approximation
y = zeros(N_h, 1);
% Number of trigonometric coefficients
M = 10;
% Offset
c_0 = 0;
% Even coefficients
a = zeros(M, 1);
% Odd coefficients
b = zeros(M, 1);
% Calculate odd coefficients according to equation
% b_mu = (4 * h) / (pi * mu)
% Also calculate limited Fourier series approx
for mu = 1 : M
if mod(mu, 2)
b(mu) = (4*1) / (pi * mu);
y = y + b(mu) * sin(2*pi*mu*t_h)';
else
b(mu) = 0;
end
end
% Calculate complex coefficients from trigonometric ones
% c_mu = 1/2 * (a_mu + j * b_mu) with c(-mu) = c(mu)*
c = 1/2 * ([flip(a); c_0; a] + 1i*[-flip(b); 0; b]);
%**************************************************************************
% Plots
%**************************************************************************
% Evaluate section by section to get plots after each other
figure
% set(gcf, 'Position', [2000 0 1400 1350]) % Set window size
subplot(3, 1, 1)
plot(t_h, v, 'LineWidth', 2)
hold on
grid on
xlabel('\(\frac{t}{T_0}\)', 'FontSize', 30);
ylabel('\(v(t)\)', 'FontSize', 20);
title('Continuous rect signal', 'FontSize', 20)
%%
plot(t_h, y, 'LineWidth', 2);
legend('Original signal', 'Finite Fourier series approx.', 'FontSize', 20)
subplot(3, 1, 2)
stem(0, c_0, 'LineWidth', 2)
hold on
stem(a, 'LineWidth', 2)
stem(b, 'LineWidth', 2)
grid on
xlim([0 max(10, M)])
xlabel('\(\mu\)', 'FontSize', 20);
ylabel('\(a_\mu\), \(b_\mu\)', 'FontSize', 25);
title(['Trigonometric Fourier coefficients (\(\mu \leq\) ', num2str(M), ')'], 'FontSize', 20)
legend({'\(c_0 = \frac{a_0}{2}\)', '\( a_\mu\)', '\( b_\mu\)'}, 'FontSize', 20)
%%
subplot(3, 1, 3)
stem(-M : M, real(c), 'LineWidth', 2)
hold on
stem(-M : M, imag(c), 'LineWidth', 2)
grid on
xlim([-max(10, M) max(10, M)])
xlabel('\(\mu\)', 'FontSize', 20);
ylabel('\(c_\mu\)', 'FontSize', 25);
title(['Complex Fourier coefficients (\(\mu \leq\) ', num2str(M), ')'], 'FontSize', 20)
legend({'\(\Re\big\{c_\mu\big\}\)', '\(\Im\big\{c_\mu\big\}\)'}, 'FontSize', 20)
Discrete Fourier transform demo (click to expand)
close all hidden
clear
clc
set(groot, 'DefaultTextInterpreter', 'LaTeX');
set(groot, 'DefaultAxesTickLabelInterpreter', 'LaTeX');
set(groot, 'DefaultAxesFontName', 'LaTeX');
set(groot, 'DefaultAxesFontSize', 14);
set(groot, 'DefaultLegendInterpreter', 'LaTeX');
cmap = lines;
%**************************************************************************
% Basic paramters
%**************************************************************************
f_s = 10;
f_s_h = 200; % Sampling freq for "continuous" signal in Hz
T_0 = 4; % Fundamental period for normalization in s
f_1 = 1; % Fundamental freq for sin signal in Hz
T_max = 4; % Signal duration in seconds
%**************************************************************************
% Calculate support variables
%**************************************************************************
% Discrete signal --------------------------------------
N = T_max * f_s + 1; % Duration in samples
n = 0 : N - 1; % Time indices
mu = -floor((N - 1) / 2) : floor((N - 1) / 2); % Spectral indices
mu_abs = 0 : floor((N - 1) / 2); % One-sided spectral indices
%**************************************************************************
% Signal generation
%**************************************************************************
% Unity impulse -----------------------------------------------
% v = zeros(N, 1);
% v(1) = 1;
% Offset ---------------------------------------------------------
v = ones(N, 1);
% Sine signal ------------------------------------------------
% m = 1;
% h = 0;
% v = sin(2*pi*m/N * n) + h;
% Rect signal ------------------------------------------------
% v = ones(N, 1);
% v(n > N / 2) = -v(n > N/2);
% v(1) = 0;
% Compute DFT / FFT
V = fftshift(fft(v) / N);
% Compute one-sided spectrum
V_abs = abs(V(mu >= 0));
V_abs(mu_abs > 0) = 2 * V_abs(mu_abs > 0);
%**************************************************************************
% Plots
%**************************************************************************
% Evaluate section by section to get plots after each other
figure
% set(gcf, 'Position', [2000 0 1400 1350]) % Set window size
subplot(3, 1, 1)
stem(n, v, 'LineWidth', 2)
hold on
grid on
xlabel('\(n\)', 'FontSize', 20);
ylabel('\(v(n)\)', 'FontSize', 20);
title('Discrete signal', 'FontSize', 20)
%%
subplot(3, 1, 2)
stem(mu, real(V), 'LineWidth', 2)
hold on
stem(mu, imag(V), 'LineWidth', 2)
grid on
xlabel('\(\mu\)', 'FontSize', 20);
ylabel('\(V(\mu)\)', 'FontSize', 20);
title('DFT spectrum', 'FontSize', 20)
legend({'\(\Re\big\{V(\mu)\big\}\)', '\(\Im\big\{V(\mu)\big\}\)'}, 'FontSize', 20)
%%
subplot(3, 1, 3)
stem(mu_abs, V_abs, 'LineWidth', 2)
grid on
xlabel('\(\mu\)', 'FontSize', 20);
ylabel('\(|V(\mu)|\)', 'FontSize', 20);
title('One-sided DFT spectrum', 'FontSize', 20)
Fourier transform demo (click to expand)
close all hidden
clear
clc
set(groot, 'DefaultTextInterpreter', 'LaTeX');
set(groot, 'DefaultAxesTickLabelInterpreter', 'LaTeX');
set(groot, 'DefaultAxesFontName', 'LaTeX');
set(groot, 'DefaultAxesFontSize', 14);
set(groot, 'DefaultLegendInterpreter', 'LaTeX');
cmap = lines;
%**************************************************************************
% Basic parameters
%**************************************************************************
f_s = 200; % Sampling freq for "continuous" signal in Hz
T_0 = 2; % Fundamental period for signal description in s
T_max = 100; % Signal duration in seconds
%**************************************************************************
% Calculate support variables
%**************************************************************************
N = T_max * f_s + 1; % Duration in samples
t = linspace(-T_max/2, T_max/2, N); % Time scale in s
w = 2 * pi * linspace(-f_s/2, f_s/2, N); % Frequency scale in s^-1
%**************************************************************************
% Signal generation
%**************************************************************************
signalSel = 5;
switch(signalSel)
case 1
% Rect signal -----------------------------------------------
% Set time signal using ones and zeros
v = ones(N, 1); % Fill signal with ones
v(t < -T_0) = 0 * v(t < -T_0); % Set signal before rect pulse to 1
v(t > T_0) = 0 * v(t > T_0); % Set signal after rect pulse to 0
% Set discretized Fourier spectrum to sin(x)/x function
% NaN value at zero is okay here
V = abs(2 * sin(w * T_0) ./ w);
% Use sinc (si) function as better alternative
% Only with dsp toolbox
% V = abs(2 * T_0 * sinc(w / pi * T_0));
% Calculate approx abs Fourier spectrum based on DFT
V_dft = abs(fftshift(fft(v) / f_s));
case 2
% Sinc signal ----------------------------------------------
% Define auxiliary parameters
f_0 = 1;
w_0 = 2 * pi * f_0;
% Set time signal to sin(x)/x function
% NaN value at zero is not okay here as
% it would make the FFT result NaNs only
v = (sin(w_0 * t) + eps) ./ (w_0 * t + eps);
% Use sinc (si) function as better alternative
% Only with dsp toolbox
% v = sinc(w_0 / pi * t);
% Set discretized Fourier spectrum to rect pulse
V = pi / w_0 * ones(N, 1);
V(w < -w_0) = 0 * V(w < -w_0);
V(w > w_0) = 0 * V(w > w_0);
% Calculate approx abs Fourier spectrum based on DFT
V_dft = abs(fftshift(fft(v) / f_s));
case 3
% Exp signal ----------------------------------------------
% Define auxiliary parameters
alpha = 0.1;
% Set time signal to exp function for t > 0
v = zeros(N, 1);
v(t >= 0) = exp(-alpha * t(t >= 0));
% Set discretized Fourier spectrum to 1/(a + jw)
V = abs(1 ./ (alpha + 1i * w));
% Calculate approx abs Fourier spectrum based on DFT
V_dft = abs(fftshift(fft(v) / f_s));
case 4
% Cos signal ----------------------------------------------
% Define auxiliary parameters
f_0 = 1;
w_0 = 2 * pi * f_0;
% Set time signal to exp function for t > 0
v = cos(w_0 * t);
% Set discretized Fourier spectrum to zero
V = zeros(N, 1);
% Find freq index closest to w_0
[~, w_0_c] = min(abs(w - w_0));
% Set value of found index to pi
V(w_0_c) = pi;
% Find freq index closest to -w_0
[~, w_0_c] = min(abs(w + w_0));
% Set value of found index to pi
V(w_0_c) = pi;
% Calculate approx abs Fourier spectrum based on DFT
% Scaling is different here, why?
V_dft = abs(fftshift(fft(v) / N * 2 * pi));
case 5
% Combined rect signal -----------------------------
% Define auxiliary parameters
a = 1;
% Set signal composed of multiple rect functions
v = ones(N, 1); % Fill signal with ones
v(t < -T_0) = 0 * v(t < -T_0); % Set signal to 0 before first rect pulse
v(t > -T_0) = a * v(t > -T_0); % Set signal to a from first rect pulse
v(t > 0) = 2 * v(t > 0); % Set signal to 2 * a from second rect pulse
v(t > T_0) = -1/2 * v(t > T_0); % Set signal to - a from third rect pulse
v(t > 4*T_0) = 0 * v(t > 4*T_0); % Set signal to 0 after third rect pulse
% Fourier transform according to sample solution
% Using eps to avoid NaN value in the center
V = a ./ (1i * w + eps) .* (exp(1i*T_0.*w) + 1 - 3 .* exp(-1i*T_0.*w) + exp(-4i*T_0.*w));
% Alternative approach to get Fourier transform using rect pulses
% DSP toolbox only
% V = 1 * a * T_0 * sinc(w / pi * 0.5 * T_0) .* exp(0.5i * w * T_0);
% V = V + 2 * a * T_0 * sinc(w / pi * 0.5 * T_0) .* exp(-0.5i * w * T_0);
% V = V - 3 * a * T_0 * sinc(w / pi * 1.5 * T_0) .* exp(-2.5i * w * T_0);
% Take absolute value
V = abs(V);
V_dft = abs(fftshift(fft(v) / f_s));
end
%**************************************************************************
% Plots
%**************************************************************************
% Evaluate section by section to get plots after each other
w_lim = 20;
figure
set(gcf, 'Position', [2000 0 1400 1350]) % Set window size
subplot(3, 1, 1)
plot(t, v, 'LineWidth', 2, 'Color', cmap(1, :))
hold on
grid on
xlabel('\(t\) / \(\mathrm{s}\)', 'FontSize', 20);
ylabel('\(v(t)\)', 'FontSize', 20);
title('Continuous time signal (discretized)', 'FontSize', 20)
subplot(3, 1, 2)
plot(w, V, 'LineWidth', 2, 'Color', cmap(2, :))
grid on
xlabel('\(\omega\) / \(\mathrm{s^{-1}}\)', 'FontSize', 20);
ylabel('\(|V(j\omega)|\)', 'FontSize', 20);
title('Fourier spectrum (discretized)', 'FontSize', 20)
xlim([-w_lim, w_lim])
subplot(3, 1, 3)
plot(w, V_dft, 'LineWidth', 2, 'Color', cmap(3, :))
grid on
xlabel('\(\omega\) / \(\mathrm{s^{-1}}\)', 'FontSize', 20);
ylabel('\(|V_{\mathrm{dft}}(j\omega)|\)', 'FontSize', 20);
title('Fourier spectrum approx. using DFT', 'FontSize', 20)
xlim([-w_lim, w_lim])
Convolution demo (click to expand)
close all hidden
clear
clc
set(groot, 'DefaultTextInterpreter', 'LaTeX');
set(groot, 'DefaultAxesTickLabelInterpreter', 'LaTeX');
set(groot, 'DefaultAxesFontName', 'LaTeX');
set(groot, 'DefaultAxesFontSize', 14);
set(groot, 'DefaultLegendInterpreter', 'LaTeX');
cmap = lines;
%**************************************************************************
% Basic paramters
%**************************************************************************
f_s = 10;
T_max = 4; % Signal duration in seconds
%**************************************************************************
% Calculate support variables
%**************************************************************************
% Discrete signal --------------------------------------
N = T_max * f_s + 1; % Duration in samples
n = 0 : N - 1; % Time indices
mu = -floor((N - 1) / 2) : floor((N - 1) / 2); % Spectral indices
mu_abs = 0 : floor((N - 1) / 2); % One-sided spectral indices
N_c = 2 * N - 1; % Length of conv. singal in samples
n_c = 0 : N_c - 1; % Time indices of conv signal
%**************************************************************************
% Signal generation
%**************************************************************************
% Set v to rect pulse --------------------------------------------
v = zeros(N, 1);
v(1 : 10) = 1;
% Set signal u ----------------------------------------------------
u = zeros(N, 1);
u(1) = 1; % Unity impulse
% u(10) = 1; % Shifted unity impulse
% u(1 : 10) = 1; % Short rect pulse
% u(1 : 15) = 1; % Long rect pulse
% Compute convolution of v and u -------------------------
y = conv(v, u);
% Compute DFT / FFT
V = fftshift(fft(v) / N);
U = fftshift(fft(u) / N);
Y = fftshift(fft(y(n_c < N) / N));
%**************************************************************************
% Plots
%**************************************************************************
% Evaluate section by section to get plots after each other
figure
% set(gcf, 'Position', [2000 0 1400 1350]) % Set window size
subplot(3, 2, 1)
stem(n, v, 'LineWidth', 2)
hold on
grid on
xlabel('\(n\)', 'FontSize', 20);
ylabel('\(v(n)\)', 'FontSize', 20);
title('Discrete time signal \(v(n)\)', 'FontSize', 20)
%%
subplot(3, 2, 2)
stem(mu, abs(V), 'LineWidth', 2)
grid on
xlabel('\(\mu\)', 'FontSize', 20);
ylabel('\(|V(\mu)|\)', 'FontSize', 20);
title('Abs. DFT spectrum \(|V(\mu)|\)', 'FontSize', 20)
%%
subplot(3, 2, 3)
stem(n, u, 'LineWidth', 2, 'Color', cmap(2, :))
grid on
xlabel('\(n\)', 'FontSize', 20);
ylabel('\(u(n)\)', 'FontSize', 20);
title('Discrete time signal \(u(n)\)', 'FontSize', 20)
%%
subplot(3, 2, 4)
stem(mu, abs(U), 'LineWidth', 2, 'Color', cmap(2, :))
grid on
xlabel('\(\mu\)', 'FontSize', 20);
ylabel('\(|U(\mu)|\)', 'FontSize', 20);
title('Abs. DFT spectrum \(|U(\mu)|\)', 'FontSize', 20)
%%
subplot(3, 2, 5)
stem(n_c, y, 'LineWidth', 2, 'Color', cmap(3, :))
grid on
xlim([0, N - 1])
xlabel('\(n\)', 'FontSize', 20);
ylabel('\(y(n)\)', 'FontSize', 20);
title('Discrete time signal \(y(n)\)', 'FontSize', 20)
%%
subplot(3, 2, 6)
stem(mu, abs(Y), 'LineWidth', 2, 'Color', cmap(3, :))
grid on
xlabel('\(\mu\)', 'FontSize', 20);
ylabel('\(|Y(\mu)|\)', 'FontSize', 20);
title('Abs. DFT spectrum \(|Y(\mu)|\)', 'FontSize', 20)
Laplace transform demo (click to expand)
close all hidden
clear
clc
set(groot, 'DefaultTextInterpreter', 'LaTeX');
set(groot, 'DefaultAxesTickLabelInterpreter', 'LaTeX');
set(groot, 'DefaultAxesFontName', 'LaTeX');
set(groot, 'DefaultAxesFontSize', 14);
set(groot, 'DefaultLegendInterpreter', 'LaTeX');
cmap = lines;
%**************************************************************************
% Basic parameters
%**************************************************************************
f_s = 200; % Sampling freq for "continuous" signal in Hz
T_0 = 1; % Fundamental period for signal description in s
T_max = 100; % Signal duration in seconds
%**************************************************************************
% Calculate support variables
%**************************************************************************
N = T_max * f_s + 1; % Duration in samples
t = linspace(-T_max/2, T_max/2, N); % Time scale in s
w = 2 * pi * linspace(-f_s/2, f_s/2, N); % Frequency scale in s^-1
%**************************************************************************
% Signal generation
%**************************************************************************
signalSel = 1;
switch(signalSel)
case 1
% Sin signal with heaviside function ------------------------------
% Define auxiliary parameters
sigma = 0.01;
w_0 = 2 * pi * 1 / T_0;
% Time domain signal and labels
v = sin(w_0 * t);
v(t < 0) = 0;
t_lim = 2*[-1 1];
t_ticks = [-2 -1 0 1 2];
t_labels = {'', '', '0', '\(T_0\)', ''};
v_ticks = [-1 0 1];
v_labels = {'-1', '0', '1'};
% Area of conversion
s_re = [0 1 1 0];
s_im = [1 1 -1 -1];
s_re_labels = {'\(-\infty\)', '', '0', '', '\(\infty\)'};
% Laplace domain signal and labels
s_conv = sprintf('\(\mathrm{Re}\{s\} = %.2f \)', sigma);
w_lim = 2*w_0*[-1 1];
w_ticks = w_0*[-2 -1 0 1 2];
w_labels = {'', '\(-\omega_0\)', '0', '\(\omega_0\)', ''};
V = w_0 ./ (sigma^2 + 1i * 2 * w + w_0^2 - w.^2);
V = abs(V);
V_lim = max(V) * [0 1];
V_ticks = max(V) * [0 1];
V_labels = {'0', '0.5'};
case 2
% Sin signal without heaviside function -------------------------------
% Define auxiliary parameters
w_0 = 2 * pi * 1 / T_0;
% Time domain signal and labels
v = sin(w_0 * t);
t_lim = 2*[-1 1];
t_ticks = [-2 -1 0 1 2];
t_labels = {'', '', '0', '\(T_0\)', ''};
v_ticks = [-1 0 1];
v_labels = {'-1', '0', '1'};
% Area of conversion
s_re = [-0.01, -0.01 0.01 0.01];
s_im = [-1 1 1 -1];
s_re_labels = {'\(-\infty\)', '', '0', '', '\(\infty\)'};
% Laplace domain signal and labels
s_conv = sprintf('\(\mathrm{Re}\{s\} = 0 \)');
w_lim = 2*w_0*[-1 1];
w_ticks = w_0*[-2 -1 0 1 2];
w_labels = {'', '\(-\omega_0\)', '0', '\(\omega_0\)', ''};
V = zeros(N, 1);
% Find freq index closest to w_0
[~, w_0_c] = min(abs(w - w_0));
% Set value of found index to pi
V(w_0_c) = 0.5;
% Find freq index closest to -w_0
[~, w_0_c] = min(abs(w + w_0));
% Set value of found index to pi
V(w_0_c) = 0.5;
V = abs(V);
V_lim = max(V) * [0 1];
V_ticks = max(V) * [0 1];
V_labels = {'0', '\(\infty\)'};
case 3
% Decreasing exp with heaviside function --------------------------
% Define auxiliary parameters
alpha = -0.7;
sigma = 0.6;
T_h = log(0.5) / alpha;
w_0 = 2 * pi * 1 / T_0;
% Time domain signal and labels
v = exp(alpha*t); % sin(w_0 * t);
v(t < 0) = 0;
t_lim = T_h*2*[-1 1];
t_ticks = T_h* [-2 -1 0 1 2];
t_labels = {'', '', '0', '\(T_h\)', ''};
v_ticks = [-1 0 1];
v_labels = {'-1', '0', '1'};
% Area of conversion
s_re = [-0.5, -0.5 1 1];
s_im = [-1 1 1 -1];
s_re_labels = {'\(-\infty\)', '\(s_{\infty}\)', '0', '', '\(\infty\)'};
% Laplace domain signal and labels
s_conv = sprintf('\(\mathrm{Re}\{s\} = %.1f \)', sigma);
w_lim = 4*pi/T_h * [-1 1];
w_ticks = 2*pi/T_h * [-2 -1 0 1 2];
w_labels = {'', '\(-\frac{2 \pi}{T_h}\)', '0', '\(\frac{2 \pi}{T_h}\)', ''};
V = 1 ./ (alpha - sigma - 1i*w);
V = abs(V);
V_lim = 1.1 * max(V) * [0 1];
V_ticks = 1.1 * max(V) * [0 1];
V_labels = {'0', '\(b\)'};
case 4
% Increasing exp with heaviside function --------------------------
% Define auxiliary parameters
alpha = 0.7;
sigma = 0.9;
T_h = log(2) / alpha;
w_0 = 2 * pi * 1 / T_0;
% Time domain signal and labels
v = exp(alpha*t); % sin(w_0 * t);
v(t < 0) = 0;
t_lim = T_h*2*[-1 1];
t_ticks = T_h* [-2 -1 0 1 2];
t_labels = {'', '', '0', '\(T_d\)', ''};
v_ticks = [-1 0 1];
v_labels = {'-1', '0', '1'};
% Area of conversion
s_re = [0.5, 0.5 1 1];
s_im = [-1 1 1 -1];
s_re_labels = {'\(-\infty\)', '', '0', '\(s_{\infty}\)', '\(\infty\)'};
% Laplace domain signal and labels
s_conv = sprintf('\(\mathrm{Re}\{s\} = %.1f \)', sigma);
w_lim = 4*pi/T_h * [-1 1];
w_ticks = 2*pi/T_h * [-2 -1 0 1 2];
w_labels = {'', '\(-\frac{2 \pi}{T_d}\)', '0', '\(\frac{2 \pi}{T_d}\)', ''};
V = 1 ./ (alpha - sigma - 1i*w);
V = abs(V);
V_lim = 1.1 * max(V) * [0 1];
V_ticks = 1.1 * max(V) * [0 1];
V_labels = {'0', '\(b\)'};
end
%**************************************************************************
% Plots
%**************************************************************************
% Evaluate section by section to get plots after each other
figure
% set(gcf, 'Position', [2000 0 1400 1350]) % Set window size
f = subplot(3, 1, 1);
plot(t, v, 'LineWidth', 2, 'Color', cmap(1, :))
hold on
grid on
xlabel('\(t\)', 'FontSize', 20);
ylabel('\(v(t)\)', 'FontSize', 20);
title('Continuous time signal', 'FontSize', 20)
xlim(t_lim)
f.XTickLabelMode = 'manual';
f.XTick = t_ticks;
f.XTickLabel = t_labels;
f.YTickLabelMode = 'manual';
f.YTick = v_ticks;
f.YTickLabel = v_labels;
%%
g = subplot(3, 1, 2);
fill(s_re, s_im, cmap(2, :), 'EdgeColor', 'none')
grid on
xlabel('\(\mathrm{Re}\{s\}\)', 'FontSize', 20);
ylabel('\(\mathrm{Im}\{s\}\)', 'FontSize', 20);
title('Area of conversion', 'FontSize', 20)
xlim([-1 1])
ylim([-1 1])
g.XTickLabelMode = 'manual';
g.XTick = [-1 -0.5 0 0.5 1];
g.XTickLabel = s_re_labels;
g.YTickLabelMode = 'manual';
g.YTick = [-1 0 1];
g.YTickLabel = {'\(-\infty\)', '0', '\(\infty\)'};
%%
h = subplot(3, 1, 3);
plot(w, V, 'LineWidth', 2, 'Color', cmap(3, :))
grid on
xlabel('\(\mathrm{Im}\{s\}\)', 'FontSize', 20);
ylabel('\(|V(s)|\)', 'FontSize', 20);
title(['Laplace spectrum (' s_conv ')'], 'FontSize', 20)
xlim(w_lim)
h.XTickLabelMode = 'manual';
h.XTick = w_ticks;
h.XTickLabel = w_labels;
ylim(V_lim)
h.YTickLabelMode = 'manual';
h.YTick = V_ticks;
h.YTickLabel = V_labels;
z-Domain system demo (click to expand)
close all hidden
clear
clc
set(groot, 'DefaultTextInterpreter', 'LaTeX');
set(groot, 'DefaultAxesTickLabelInterpreter', 'LaTeX');
set(groot, 'DefaultAxesFontName', 'LaTeX');
set(groot, 'DefaultAxesFontSize', 14);
set(groot, 'DefaultLegendInterpreter', 'LaTeX');
cmap = lines;
%**************************************************************************
% Basic parameters
%**************************************************************************
f_s = 48e3; % Sampling freq in Hz
%**************************************************************************
% System characterisation
%**************************************************************************
systemSel = 4;
% All systems are real-valued (partly complex-conj)
switch(systemSel)
case 1
% Stable FIR highpass filter
% Minimal phase
z = [0.5 + 0.5j, 0.5 - 0.5j]';
p = [0 0]';
[b, a] = zp2tf(z, p, 1);
case 2
% Instable IIR lowpass/bandpass filter
% Maximal phase
z = [-1 + 1i, -1 - 1i]';
p = [1/sqrt(2) * (1.2 + 1i), 1/sqrt(2) * (1.2 - 1i)]';
[b, a] = zp2tf(z, p, 1);
case 3
% Stable IIR lowpass (Butterworth) filter
% Mixed phase (implementation-dependent)
N = 4;
[b, a] = butter(N, 0.5);
[z, p, ~] = tf2zpk(b, a);
case 4
% Stable FIR highpass filter
% Linear phase
z = [1/(2 * sqrt(2)) *[1 + 1i, 1 - 1i], sqrt(2) *[1 + 1i, 1 - 1i]]';
p = [0 0 0 0]';
[b, a] = zp2tf(z, p, 1);
end
% Get system from coefficients
H = tf(b, a, f_s);
% Get frequency response from coefficients
[H_f, w] = freqz(b, a, 2^10);
% Norm frequency vector
w = w / pi;
% Get impulse response from system
[h, t_h] = impulse(H);
%**************************************************************************
% Plots
%**************************************************************************
% Evaluate section by section to get plots after each other
figure
% set(gcf, 'Position', [2000 0 1400 1350]) % Set window size
phi = linspace(0, 2*pi, 1000);
x = cos(phi);
y = sin(phi);
% Pole zero plot
subplot(4, 1, 1);
plot(real(z), imag(z), 'LineStyle', 'none', 'Marker', 'o', 'Color', cmap(1, :))
hold on
plot(real(p), imag(p), 'LineStyle', 'none', 'Marker', 'x', 'Color', cmap(1, :))
plot(x, y, '--', 'Color', 'Black')
plot([-4 4], [0 0], '--', 'Color', 'Black')
plot([0 0], [-4 4], '--', 'Color', 'Black')
xlim([-2 2])
ylim([-2 2])
grid on
xlabel('\(\mathrm{Re}\big(z\big)\)')
ylabel('\(\mathrm{Im}\big(z\big)\)')
title('Pole-zero plot')
%%
% Magnitude of frequency response
subplot(4, 1, 2)
plot(w, 20*log10(abs(H_f)))
grid on
xlabel('\(\frac{\Omega}{\pi}\)')
ylabel('\(|H\big(e^{j \Omega}\big)|\) / dB')
title('Frequency response - magnitude')
%%
% Impulse response
subplot(4, 1, 3)
stem(t_h, h)
grid on
xlabel('\(n \, T_s\) / s')
title('Impulse response')
%%
% Phase of frequency response
subplot(4, 1, 4)
plot(w, rad2deg(unwrap(angle(H_f))))
grid on
xlabel('\(\frac{\mathrm{\Omega}}{\pi}\)')
ylabel('\(\phi\) / deg')
title('Frequency response - phase')
Python Theory Examples
Python introduction (click to expand)
import numpy as np # python extension for vector and matrix operations
import matplotlib.pyplot as plt # python extension for plotting
# Matrix and element wise arithmetic operation ---------------------------------------------
a = np.array([[1,2,3,4]]) # Row vector
b = np.array([[2],[3],[4],[5]]) # Column vector
a = a.T # Transpose vector
a = np.transpose(a) # Second way transpose vector
c = np.matmul(b,a) # Matrix multiplication
c = np.multiply(a,a) # Element wise multiplication
#**************************************************************************
# Basic parameters
#**************************************************************************
f_s = 100.; # Sample rate in Hz
T = 10.0 # Signal duration in s
f_0 = 0.5 # Test signal frequency in Hz
L = int(f_s * T) # Signal length in samples
#**************************************************************************
# Generate signals
#**************************************************************************
# Generate equidistant time scale from 0 to 10 s
t = np.arange(0,L, dtype=float) / f_s
# Generate sine test signal with frequency f_0
v = np.sin(2*np.pi*f_0*t);
#**************************************************************************
# Create plots
#**************************************************************************
# Minimal plot of test signal
plt.figure()
plt.plot(t,v)
plt.show()
# Plot with some beautification ------------------------------------------
plt.figure
plt.plot(t,v, linewidth=2, color='red')
plt.title('Test signal with some beautification')
plt.xlabel('Time /s')
plt.ylabel('Test signal')
plt.xlim((0, 1/f_0))
plt.grid()
plt.show()
# Discrete stem plot ------------------------------------------------------
plt.figure()
plt.stem(t,v, basefmt=" ")
plt.title("Test signal with stem plot")
plt.xlabel('Time /s')
plt.ylabel('Magntiude')
plt.legend(['Test signal'])
plt.xlim((0,0.5))
plt.ylim((0,1))
plt.grid()
plt.show()
# Multiple plots ----------------------------------------------------------
plt.figure()
plt.plot(t,v)
plt.plot(t,-v)
plt.xlabel('Time / s')
plt.ylabel('Magnitude')
plt.legend(['Test signal', 'Inv. test signal'])
plt.grid()
plt.xlim((0,1/f_0))
plt.show()
# Multiple plots with subplot --------------------------------------------
# 2 vertical, 1 horizontal plot
fig, ax = plt.subplots(2,1) # First subplot
ax[0].plot(t, v)
ax[0].set_title('Multiple plots with subplot')
ax[0].set_ylabel('Magnitude')
ax[0].legend(['Test signal'])
ax[0].grid()
ax[0].set_xlim((0,1/f_0))
# Second subplot
ax[1].plot(t, -v)
ax[1].set_xlabel('Time / s')
ax[1].set_ylabel('Magnitude')
ax[1].legend(['Inv. test signal'])
ax[1].grid()
ax[1].set_xlim((0, 1/f_0))
plt.show()
#**************************************************************************
# 3D Plots (will be discuessed next week)
#**************************************************************************
#
# Plot v, v_2 and v_3 as 3D trajectory ----------------------------------
# Generate sine signal as first component
v_x = np.multiply(np.sin(2*np.pi*f_0*t),t);
# Generate cosine signal as second component
v_y = np.multiply(np.cos(2*np.pi*f_0*t),t);
# Generate linear function as third component
v_z = t
# Create a 3D plot
fig = plt.figure()
ax = fig.add_subplot(111,projection='3d')
ax.plot(v_x,v_y,v_z)
ax.set_title('3D plot as trajectory')
ax.set_xlabel('X / m')
ax.set_ylabel('Y / m')
ax.set_zlabel('Z / m', rotation=0)
ax.zaxis.labelpad=-5
plt.show()
# Plot noise as surface plot
# Generate gaussian noise as 2D matrix
L_2 = 50; # Use less samples
v_2d = np.random.randn(L_2, L_2); # Generate noise
x = np.arange(0,L_2) # X axis
y = np.arange(0,L_2) # Y axis
fig = plt.figure(figsize=(10,10))
ax1 = fig.add_subplot(211,projection='3d')
x,y = np.meshgrid(x,y)
surf1 = ax1.plot_surface(x, y, v_2d, linewidth=0, antialiased=False, cmap='jet')
ax1.set_xlabel('X / m')
ax1.set_ylabel('Y / m')
ax1.set_zlabel('Z / m')
ax1.set_title('Surface plot 3D')
cbar1 = fig.colorbar(surf1)
cbar1.set_label('Magnitude')
ax2 = fig.add_subplot(212,projection='3d')
surf2 = ax2.plot_surface(x, y, v_2d, linewidth=0, antialiased=False, cmap='jet')
ax2.set_xlabel('X / m')
ax2.set_ylabel('Y / m')
ax2.set_zlabel('Z / m')
ax2.set_title('Surface plot topview')
ax2.view_init(azim=270, elev=90)
ax.axis('tight')
cbar1 = fig.colorbar(surf2)
cbar1.set_label('Magnitude')
plt.ioff()
plt.show()
System properties demo (click to expand)
import numpy as np # python extension for vector and matrix operations
import matplotlib.pyplot as plt # python extension for plotting
#**************************************************************************
# Basic paramters
#**************************************************************************
N = 10; # Number of samples
#**************************************************************************
# Calculate support variables and signals
#**************************************************************************
n = np.arange(0,N) # Time index
n = n.reshape(N,1)
# v -----------------------------------------------------------
v = np.zeros((N, 1)); # Input signal
v[1] = 1
v[4] = 0.5
v[7] = 1
# y1 -----------------------------------------------------------
y_1 = v
# y2 -----------------------------------------------------------
# y3 = 2*v(n) + v(n - 1)
y_2 = 2*v
y_2[1:] = y_2[1:] + v[0 : - 1]
# y3 -----------------------------------------------------------
y_3 = np.zeros((N, 1))
y_3[0:] = 2*v[0:]
y_3 = np.multiply(y_3,n + 1) / 10 + 0.1
#y_3 = y_3.* (n + 1) / 10 + 0.1;
# y4 -----------------------------------------------------------
y_4 = np.zeros((N, 1))
y_4[0 :-1] = v[1 :]
# y5 -----------------------------------------------------------
y_5 = v**2
# y6 -----------------------------------------------------------
y_6 = 2*v + 0.2
#**************************************************************************
# Plots
#**************************************************************************
# Evaluate section by section to get plots after each other
fig, ax = plt.subplots(2,1, figsize=(6,10))
markerline, _, _ = ax[0].stem(n,v,basefmt=' ')
plt.setp(markerline, 'markerfacecolor', 'none')
ax[0].grid()
ax[0].set_xlabel('\(n\)')
ax[0].set_ylabel('\(v(n)\)')
ax[0].set_title('Input signal \(v(n)\)')
# output signal of system 1 -----------------------------------------------
markerline, stemlines, _ = ax[1].stem(n, y_1, basefmt=' ')
plt.setp(markerline, 'markerfacecolor', 'none', 'color','red')
plt.setp(stemlines, 'color', 'red')
ax[1].grid()
ax[1].set_xlabel('\(n\)')
ax[1].set_ylabel('\(y_1(n)\)')
ax[1].set_title('1st system: Real output signal \(y_1(n)\)')
plt.show()
fig, ax = plt.subplots(3,1, figsize=(8,15))
markerline0, stemlines0, _ = ax[0].stem(n, np.zeros((N, 1)),basefmt=' ')
markerline1, stemlines1, _ = ax[0].stem(n, y_1,basefmt=' ')
plt.setp(markerline0, 'markerfacecolor', 'none', 'color','red')
plt.setp(stemlines0, 'color', 'red')
plt.setp(markerline1, 'markerfacecolor', 'none', 'color','orange')
plt.setp(stemlines1, 'color', 'orange')
ax[0].legend([r'\(\Re\{y_1(n)\}\)', r'\(\Im\{y_1(n)\}\)'])
ax[0].grid()
ax[0].set_xlabel('\(n\)')
ax[0].set_ylabel('\(y_1(n)\)')
ax[0].set_title('1st system: Complex output signal \(y_1(n)\)')
markerline, stemlines, _ = ax[1].stem(n, y_2, basefmt=' ')
plt.setp(markerline, 'markerfacecolor', 'none', color='purple')
plt.setp(stemlines, color='purple')
ax[1].grid()
ax[1].set_xlabel('\(n\)')
ax[1].set_ylabel('\(y_2(n)\)')
ax[1].set_title('2nd: Output signal \(y_2(n)\)')
markerline, stemlines, _ = ax[2].stem(n, y_3, basefmt=' ')
plt.setp(markerline, 'markerfacecolor', 'none', color='green')
plt.setp(stemlines, color='green')
ax[2].grid()
ax[2].set_xlabel('\(n\)')
ax[2].set_ylabel('\(y_3(n)\)')
ax[2].set_title('3rd system: Output signal \(y_3(n)\)')
plt.show()
fig, ax = plt.subplots(4,1, figsize=(8,20))
# Input signal -----------------------------------------------------
markerline, stemlines, _ = ax[0].stem(n, v, basefmt=' ')
plt.setp(markerline, 'markerfacecolor','none')
ax[0].grid()
ax[0].set_xlabel('\(n\)')
ax[0].set_ylabel('\(v(n)\)')
ax[0].set_title('Input signal \(v(n)\)')
# Output signal of system 4 -----------------------------------------------
markerline, stemlines, _ = ax[1].stem(n, y_4, basefmt=' ')
plt.setp(markerline, 'markerfacecolor', 'none', color='red')
plt.setp(stemlines, color='red')
ax[1].grid()
ax[1].set_xlabel('\(n\)')
ax[1].set_ylabel('\(y_4(n)\)')
ax[1].set_title('4th system: Output signal \(y_3(n)\)')
# Output signal of system 5 -----------------------------------------------
markerline, stemlines, _ = ax[2].stem(n, y_5, basefmt=' ')
plt.setp(markerline, 'markerfacecolor', 'none', color='orange')
plt.setp(stemlines, color='orange')
ax[2].grid()
ax[2].set_xlabel('\(n\)')
ax[2].set_ylabel('\(y_4(n)\)')
ax[2].set_title('5th system: Output signal \(y_3(n)\)')
# Output signal of system 6 -----------------------------------------------
markerline, stemlines, _ = ax[3].stem(n, y_6, basefmt=' ')
plt.setp(markerline, 'markerfacecolor', 'none', color='green')
plt.setp(stemlines, color='green')
ax[3].grid()
ax[3].set_xlabel('\(n\)')
ax[3].set_ylabel('\(y_4(n)\)')
ax[3].set_title('6th system: Output signal \(y_3(n)\)')
plt.show()
Evaluation
Evaluation | |
---|---|
Completed evaluations |
Formulary
A formulary can be found below:
Link | Content |
---|---|
Formulary |